[1] 黄显波, 田志宏, 邓则勤, 郑家团, 林成豹, 唐江霞. 水稻三明显性核不育基因的初步鉴定. 作物学报, 2008, 34(10): 1865-1868.[2] Itoh JI, Nonomura KI, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plant development: from zygote to spikelet. Plant Cell Physiol, 2005, 46(1): 23-47.[3] Antony G, Zhou JH, Huang S, Lib T, Liu B, White F, Yang B. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell, 2010, 22(11): 3864-3876.[4] Zhou SR, Wang Y, Li WC, Zhao ZG, Ren YL, Wang Y, Gu SH, Lin QB, Wang D, Jiang L, Su N, Zhang X, Liu LL, Cheng ZJ, Lei CL, Wang JL, Guo XP, Wu FQ, Ikehashi H, Wang HY, Wan JM. Pollen Semi-Sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell, 2011, 23(1): 111-129.[5] Huang ZY, Gan ZS, He YS, Li YH, Liu XD, Mu H. Functional analysis of a rice late pollen-abundant UDP-glucose pyrophosphorylase (OsUgp2) promoter. Mol Biol Rep, 2011, 38(7): 4291-4302.[6] Chen RZ, Zhao X, Shao Z, Wei Z, Wang YY, Zhu LL, Zhao J, Sun MX, He RF, He GC. Rice UDP-Glucose Pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell, 2007, 19(3): 847-861.[7] Zhang H, Liang WQ, Yang XJ, Luo X, Jiang N, Ma H, Zhang DB. Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell, 2010, 22(3): 672-689.[8] Duan YL, Diao ZJ, Liu HQ, Cai MS, Wang F, Lan T, Wu WR. Molecular cloning and functional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L.). Plant Mol Biol, 2010, 74(6): 605-615.[9] Xiao H, Wang Y, Liu DF, Wang WM, Li XB, Zhao XF, Xu JC, Zhai WX, Zhu LH. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol, 2003, 52(8): 957-966.[10] Liu ZH, Bao WJ, Liang WQ, Yin JY, Zhang DB. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J Integr Plant Biol, 2010, 52(7): 670-678.[11] Hu LF, Liang WQ, Yin CS, Cui X, Zong J, Wang X, Hu JP, Zhan DB. Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell, 2011, 23(2): 515-533.[12] Yamaguchi T, Lee DY, Miyao A, Hirochika H, An GH, Hirano HY. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell, 2006, 18(1): 15-28.[13] Xiao H, Tang JF, Li YF, Wang WM, Li XB, Jin L, Xie R, Luo HF, Zhao XF, Meng Z, He GH, Zhu LH. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J, 2009, 59(5): 789-801.[14] Wang M, Wang KJ, Tang D, Wei CX, Li M, Shen Y, Chi ZC, Gu MH, Cheng ZK. The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell, 2010, 22(2): 417-430.[15] Chang L, Ma H, Xue HW. Functional conservation of the meiotic genes SDS and RCK in male meiosis in the monocot rice. Cell Res, 2009, 19(6): 768-782.[16] Zhang DS, Liang WQ, Yin CS, Zong J, Gu FW, Zhang DB. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol, 2010, 154(1): 149-162.[17] Tao JY, Zhang LR, Chong K, Wang T. OsRAD21-3, an orthologue of yeast RAD21, is required for pollen development in Oryza sativa. Plant J, 2007, 51(5): 919-930.[18] Zhu QH, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135(3): 1514-1525.[19] Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao YW, Liang WQ, Zhang DB. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell, 2010, 22(1): 173-190.[20] Luo H, Lee JY, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK. RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol, 2006, 62(3): 397-408.[21] Wang YF, Zha XJ, Zhang SY, Qian XY, Dong XX, Sun F, Yang JS, Down-regulation of the OsPDCD5 gene induced photoperiod-sensitive male sterility in rice. Plant Sci, 2010, 178(2): 221-228.[22] 李文娟, 田志宏. 水稻显性核不育基因的研究概况. 安徽农学通报, 2009, 15(11): 76-79.[23] 颜龙安, 张俊才, 朱成, 欧阳颔, 李季能, 蔡跃辉. 水稻显性雄性核不育基因鉴定初报. 作物学报, 1989, 15(2): 174-181.[24] 邓晓建, 周开达. 低温敏显性核不育水稻“8987”的育性转换与遗传研究. 四川农业大学学报, 1994, 12(3): 376-382.[25] 兰涛, 郑军, 吴为人, 汪斌. 用微卫星标记构建两系稻培矮64s/E32的分子遗传连锁图. 遗传, 2003, 25(5): 557-562.[26] Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease resistance genes by bulked seg-regant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88(21): 9828-9832.[27] Temnykh S, Declerck G Lukashova A, Lipovich L, Cartinhour S, Mccouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11(8): l44l-l452.[28] Lincoln S, Daly M, Lander E. Constructing genetics maps with MAPMAKER, EXP 3.0. Whitehead Institute Technical Report. Cambridge, MA, 1992.[29] Wilkie AOM. The molecular basis of genetic dominance. J Med Genet, 1994, 31(2): 89-98.[30] Isoda K, Roth S, Nusslein-Volhard C. The functional domains of the Drosophila morphogen dorsal: evidence from the analysis of mutants. Genes Dev, 1992, 6(4): 619-630.[31] Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53 associated protein in human sarcomas. Nature, 1992, 358(6381): 80- 83.[32] White RAH, Akam ME. Contrabithorax mutations cause inappropriate expression of Ultrabithorax products in Drosophila. Nature, 1985, 318(6064): 567-569.[33] Kacser H, Burns JA. The molecular basis of dominance. Genetics, 1981, 97(3-4): 639-666. |