遗传 ›› 2012, Vol. 34 ›› Issue (7): 835-847.doi: 10.3724/SP.J.1005.2012.00835
张计育1, 王庆菊2, 郭忠仁1
收稿日期:
2011-12-08
修回日期:
2012-02-02
出版日期:
2012-07-20
发布日期:
2012-07-25
通讯作者:
郭忠仁
E-mail:zhongrenguo@cnbg.net
基金资助:
辽宁省自然科学基金项目(编号:20102100)资助
ZHANG Ji-Yu1, WANG Qing-Ju2, GUO Zhong-Ren1
Received:
2011-12-08
Revised:
2012-02-02
Online:
2012-07-20
Published:
2012-07-25
摘要: 植物AP2/ERF是一个庞大的转录因子基因家族, 含有由60~70个氨基酸组成的AP2/ERF结构域而得名, 存在于所有的植物中。AP2/ERF转录因子参与多种生物学过程, 包括植物生长、花发育、果实发育、种子发育、损伤、病菌防御、高盐、干旱等环境胁迫响应等。AP2/ERF类转录因子参与水杨酸、茉莉酸、乙烯、脱落酸等多种信号转导途径, 而且是逆境信号交叉途径中的连接因子。文章对国内外近年来有关植物AP2/ERF类转录因子的分类、生物学功能、基因调控等方面的研究进行了综述。
张计育,王庆菊,郭忠仁. 植物AP2/ERF类转录因子研究进展[J]. 遗传, 2012, 34(7): 835-847.
ZHANG Ji-Yu, WANG Qing-Ju, GUO Zhong-Ren. Progresses on plant AP2/ERF transcription factors[J]. HEREDITAS, 2012, 34(7): 835-847.
[1] Jofuku KD, den Boer BG, van Montagu M, Okamuro JK. Control of Arabidopsis flower and seed develop-ment by the homeotic gene APETALA2. Plant Cell, 1994, 6(9): 1211-1225.[2] Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with anethylene-responsive element. Plant Cell, 1995, 7(2): 173-182.[3] Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res, 1999, 27(2): 470-478.[4] Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana1 P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Viola R. The genome of the domesticated apple (Malus× domestica Borkh.). Nature Genet, 2010, 42: 833-839.[5] Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140(2): 411-432.[6] Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 1996, 8(2): 155-168.[7] Chuck G, Meeley RB, Hake S. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet. Genes Dev, 1998, 12(8): 1145-1154.[8] Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14(8): 1737-1749.[9] Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301(5633): 653-657.[10] Hu YX, Wang YX, Liu XF, Li JY. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res, 2004, 14(1): 8-15.[11] Sohn KH, Sung Chul Lee SC, Jung HW, Hong JK, Kook Hwang BK. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol, 2006, 61(6): 897-915.[12] Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290(3): 998-1009.[13] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6(2): 251-264.[14] Thomashow MF. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571-599.[15] Hao DY, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene responsive element-binding factor (ERF domain) in plants. J Biol Chem. 1998, 273(41): 26857-26861.[16] Raikhel NV. Nuclear targeting in plants. Plant Physiol, 1992, 100(4): 1627-1632.[17] Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repres-sors of GCC box-mediated gene expression. Plant Cell, 2000, 12(3): 393-404.[18] Pearson RB, Kemp BE. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol, 1991, 200: 62-81.[19] Sanchez-Ballesta MT, Lluch Y, Gosalbes MJ. A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta, 2003, 218(1): 65-70.[20] Zhang G, Chen M, Chen X, Xu Z, Guan S, Li LC, Li A, Guo J, Mao L, Ma Y. Phylogeny, gene structures, and ex-pression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot, 2008, 59(15): 4095-4107.[21] Zhuang J, Anyia A, Vidmar J, Xiong A S, Zhang J. Dis-covery and expression assessment of the AP2-like genes in Hordeum vulgare. Acta Physiol Plant, 2011, 33(5): 1639-1649.[22] Zhuang J, Yao QH, Xiong AS, Zhang J. Isolation, phy-logeny and expression patterns of AP2-like genes in Apple (Malus × domestica Borkh). Plant Mol Biol Rep, 2011, 29(1): 209-216.[23] Zhuang J, Chen JM, Yao QH, Xiong F, Sun CC, Zhou XR, Zhang J, Xiong AS. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Mol Biol Rep, 2011, 38(2): 745-753.[24] Zhuang J, Deng DX, Yao QH, Zhang J, Xiong F, Chen JM, Xiong AS. Discovery, phylogeny and expression patterns of AP2-like genes in maize. Plant Growth Regul, 2010, 62(1): 51-58.[25] Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol, 2002, 5(4): 325-331.[26] Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot, 2004, 55(395): 225-236.[27] Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol, 2006, 9(4): 436-442.[28] Ton J, Jakab G, Toquin V, Flors V, Iavicoli A, Maeder MN, Métraux JP, Mauch-Mani B. Dissecting the β-aminobutyric cid-induced priming phenomenon in Arabidopsis. Plant Cell, 2005, 17(3): 987-999.[29] Ton J, Mauch-Mani B. β-amino-butyric acid-induced re-sistance against necrotrophic pathogens is abased on ABA-dependent riming for callose. Plant J, 2004, 38(1): 119-130.[30] Zhang G, Chen M, Li LC, Xu Z, Chen X, Guo J, Ma Y. Overexpression of the soybean GmERF3 gene, an AP2/ ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60(13): 3781-3796.[31] Menke FL, Champion A, Kijne JW, Memelink J. A novel jasmonate-and elicitor-responsive element in the periwin-kle secondary metabolite biosynthetic gene Str in-teracts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J, 1999, 18(16): 4455-4463.[32] van der Fits L, Memelink J. ORCA3, a jasmonate responsive transcriptional regulator of plant primary and seconddary metabolism. Science, 2000, 289(5477): 295-297.[33] van der Fits L, Memelink J. The jasmonate-inducible AP2/ ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J, 2001, 25(1): 43-53.[34] Pré M, Atallah M, Champion A, de Vos M, Pieterse CMJ, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol, 2008, 147(3): 1347-1357.[35] Memelink J. Regulation of gene expression by jasmonate hormones. Phytochemistry, 2009, 70(13-14): 1560-1570.[36] Bowman JL, Sakai H, Jack T, Weigel D, Mayer U, Mey-erowitz EM. Superman, a regulator of floral homeotic genes in Arabidopsis. Development, 1992, 114(3): 599-615.[37] Irish VF, Sussex IM. Function of the Apetala-1 gene during Arabidopsis floral development. Plant Cell, 1990, 2(8): 741-753.[38] Huala E. Sussex IM. Leafy interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell, 1992, 4(8): 901-913.[39] Haughn GW, Somerville CR. Genetic control of morpho-genesis in Arabidopsis. Dev Genet, 1988, 9(2):73-89.[40] Bowman JL, Smyth DR, Meyerowitz EM. Genes directing flower development in Arabidopsis. Plant Cell, 1989, 1(1): 37-52.[41] Bowman JL, Drews GN, Meyerowitz EM. Expression of the Arabidopsis floral homeotic gene agamous is restricted to specific cell types late in flower development. Plant Cell, 1991, 3(8): 749-758.[42] Kunst L, Klenz JE, Martinezzapater J, Haughn GW. Ap2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell, 1989, 1(12): 1195- 1208.[43] Maes T, van de Steene N, Zethof J, Karimi M, D’Hauw M, Mares G, van Montagu M, Gerats T. Petunia AP2-like genes and their role in flower and seed development. Plant Cell, 2001, 13(2): 229-244.[44] Keck E, McSteen P, Carpenter R, Coen E. Separation of genetic functions controlling organ identity in flowers. EMBO J, 2003, 22(5): 1058-1066.[45] Nilsson L, Carlsbecker A, Sundas-Larsson A, Vahala T. APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues. Planta, 2007, 225(3): 589-602.[46] Bartley GE, Ishida BK. Digital fruit ripening: data mining in the TIGR tomato gene index. Plant Mol Biol Rep, 2002, 20(2): 115-130.[47] Alba R, Payton P, Fei ZJ, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ. Transcriptome and se-lected metabolite analyses reveal multiple points of eth-ylene control during tomato fruit development. Plant Cell, 2005, 17(11): 2954-2965.[48] Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni J. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J, 2010, 64(6): 936-947.[49] Niu X, Helentjaris T, Bate NJ. Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell, 2002, 14(10): 2565-2575.[50] Jofuku KD, Omidyar PK, Gee Z, Okamuro JK. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA, 2005, 102(8): 3117-3122.[51] Ohto MA, Fischer RL, Goldberg RB, Nakamura K, Harada JJ. Control of seed mass by APETALA2. Proc Natl Acad Sci USA, 2005, 102(8): 3123-3128.[52] Kunst L, Klenz JE, Martinez-Zapater J, Haughn GW. AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana. Plant Cell, 1989, 1(12): 1195-1208.[53] Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 1993, 119(1): 721-743.[54] Schultz EA, Haughn GW. Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Develop-ment, 1993, 119(1): 745-765.[55] Okamuro JK, den Boer BGW, Jofuku KD. Regulation of Arabidopsis flower development. Plant Cell, 1993, 5(10): 1183-1193.[56] Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination. Curr Opin Plant Biol, 2002, 5(1): 33-36.[57] Kucera B, Cohn MA, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005, 15(4): 281-307[58] Jacobsen JV, Pearce DW, Poole AT, Pharis RP, Mander LN. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol Plant, 2002, 115(3): 428-441.[59] Finkelstein RR. Mutations at two new Arabidopsis ABA response loci are similar to the abi3 muta-tions. Plant J, 1994, 5(6): 765-771.[60] Nambara E, Naito S, McCourt P. A mutant of Arabidopsis which is defective in seed develop-ment and storage protein accumulation is a new abi3 allele. Plant J, 1992, 2(4): 435-441.[61] Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992, 4(10): 1251-1261.[62] Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell, 1998, 10(6): 1043-1054.[63] Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, León P. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev, 2000, 14(16): 2085-2096.[64] Huijser C, Kortstee A, Pego J, Weisbeek P, Wisman E, Smeekens S. The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: Involvement of abscisic acid in sugar responses. Plant J, 2000, 23(5): 577-585.[65] Laby RJ, Kincaid MS, Kim D, Gibson SI. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J, 2000, 23(5): 587-596.[66] Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J, 2001, 26(4): 421-433.[67] Wang C, Wang H, Zhang J, Chen S. A seed-specific AP2-domain transcription factor from soybean plays a certain role in regulation of seed germination. Sci China Ser C-Life Sci, 2008, 51(4): 336-345.[68] Dekkers BJ, Schuurmans JA, Smeekens SC. Glucose de-lays seed germination in Arabidopsis thaliana. Planta, 2004, 218(4): 579-588.[69] Price J, Li TC, Kang SG, Na JK, Jang J. Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol, 2003, 132(3): 1424-1438.[70] Zhao L, Luo Q, Yang C, Han Y, Li W. A RAV-like tran-scription factor controls photosynthesis and senescence in soybean. Planta, 2008, 227(6): 1389-1399.[71] Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell, 2005, 17(8): 2384-2396.[72] Tsutsui T, Kato W, Asada Y, Sako K, Sato T, Sonoda Y, Kidokoro S, Yamaguchi-Shinozaki K, Tamaoki M, Ara-kawa K, Ichikawa T, Nakazawa M, Seki M, Shinozaki K, Matsui M, Ikeda A, Yamaguchi J. DEAR1, a transcriptional repressor of DREB protein that mediates plant de-fense and freezing stress responses in Arabidopsis. J Plant Res, 2009, 122(6): 633-643.[73] Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yil-maz S, Lee H, Stevenson B, Zhu JK. Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett, 2006, 580(28-29): 6537-6542.[74] Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL, Mittler R. The EAR-motif of the Cys2/His2-type zinc finger pro-tein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem, 2007, 282(12): 9260-9268.[75] Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech, 1999, 17(3): 287-291.[76] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamagu-chi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction path-ways in drought and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10(8), 1391-1406.[77] Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mim-ics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124(4): 1854-1865.[78] Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5): 1292-1309.[79] Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought responsive element in an ABA-dependent pathway. Plant J, 2002, 30(6): 679-689.[80] Wei G, Pan Y, Lei J, Zhu YX. Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana. J Bio-chem Mol Biol, 2005, 38(4): 440-446.[81] Huang B, Liu JY. A cotton dehydration responsive element binding protein functions as a transcriptional rep-ressor of DRE mediated gene expression. Biochem Biophys Res Commun, 2006, 343(4): 1023-1031.[82] Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tol-erance in transgenic plants. Biochem Biophys Res Commun, 2007, 353(2): 299-305.[83] Peng X, Ma X, Fan W, Su M, Cheng L, Iftekhar A, Lee B, Qi D, Shen S, Liu G. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep, 2011, 30(8): 1493-1502.[84] Hong B, Ma C, Yang Y, Wang T, Yamaguchi-Shinozaki K, Gao J. Over-expression of AtDREB1A in chrysan-themum enhances tolerance to heat stress. Plant Mol Biol, 70(3): 231-240.[85] Dong J, Wang X, Wang K, Wang Z, Gao H. Isolation and characterization of a gene encoding an ethylene responsive factor protein from Ceratoides arborescens. Mol Biol Rep, 2012, 39(2): 1349-1357.[86] Abogadallah GM, Nada RM, Malinowski R, Quick P. Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tol-erance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta, 2011, 233(6): 1265-1276.[87] Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayaku-mar M, Pereira A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA, 2007, 104(39): 5270-15275.[88] Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R. Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Rep, 2008, 27(11): 1787-1795.[89] Zhang H, Liu W, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res, 2010, 19(5): 809-818.[90] Zhang Z, Li F, Li D, Zhang H, Huang R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta, 2010, 232(3): 765-774.[91] Zhang Z, Huang R. Enhanced tolerance to freezing in to-bacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosyn-thesis. Plant Mol Biol, 2010, 73(3): 241-249.[92] Chen JR, Lu JJ, Liu R, Xiong ZY, Wang TX, Chen SY, Guo LB, Wang HF. DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). Plant Growth Regul, 2010, 60(3): 199-211.[93] Jin T, Chang Q, Li W, Yin D, Li Z, Wang D, Liu B, Liu L. Stress-inducible expression of GmDREB1 con-ferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult, 2010, 100(2): 219-227.[94] Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid re-sponses. Plant Mol Biol, 2005, 58(4): 585-596.[95] Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resis-tance against pathogen attack and osmotic stress in to-bacco. Plant Cell, 2001, 13(5): 1035-1046.[96] Shin R, Park JM, An JM, Paek KH. Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens. Mol Plant Microbe Interact, 2002, 15(10): 983-989.[97] Gutterson N, Reuber TL. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol, 2007, 7(4): 465-471.[98] Yi SY, Kim JH, Joung YH, Lee S, Kim WT, Yu SH, Choi D. The pepper transcription factor CaPF1 confers patho-gen and freezing tolerance in Arabidopsis. Plant Physiol, 2004, 136(1): 2862-2874.[99] Zuo KJ, Qin J, Zhao JY, Ling H, Zhang LD, Cao YF, Tang KX. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene, 2007, 391 (1-2): 80-90.[100] Fischer U, Dröge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant Microbe Interact, 2004, 17(10): 1162-1171.[101] Tang W, Charles TM, Newton RJ. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol Biol, 2005, 59(4): 603-617.[102] Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class II ERF transcriptional rep-ressors share an essential motif for active repression. Plant Cell, 2001, 13(8): 1959-1968.[103] Ohta M, Ohme-Takagi M, Shinshi H. Three ethylene responsive transcription factors in tobacco with distinct transactivation functions. Plant J, 2000, 22(1): 29-38.[104] Pan I, Li CW, Su RC, Cheng CP, Lin CS, Chan MT. Ec-topic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato. Planta, 2010, 232(5): 1075-1086.[105] Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol, 2003, 132(2): 1020-1032.[106] McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K. Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol, 2005, 139(2): 949-959.[107] Zhou J, Tang X, Martin GB. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogene-sis-related genes. EMBO J, 1997, 16(11): 3207-3218.[108] Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, Latché A, Pech JC, Bouzayen M. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box ele-ment. FEBS Lett, 2003, 550(1-3): 149-154.[109] Lee JH, Hong JP, Oh SK, Lee S, Choi D, Kim WT. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol, 2004, 55(1): 61-81.[110] Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ. Isolation and molecular characterization of the Triticum aesti-vum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol, 2007, 65(6): 719-732.[111] Hao D, Yamasaki K, Sarai A, Ohme-Takagi M. Determi-nants in the sequence specific binding of two plant tran-scription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry, 2002, 41(13): 4202-4208.[112] Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell, 2002, 14(4): 817-831.[113] Sasaki K, Mitsuhara I, Seo S, Ito H, Matsui H, Ohashi Y. Two novel AP2/ERF domain proteins interact with cis-element VWRE for wound-induced expression of the Tobacco tpoxN1 gene. Plant J, 2007, 50(6): 1079-1092.[114] Sasaki K, Hiraga S, Ito H, Seo S, Matsui H, Ohashi Y. A wound-inducible tobacco peroxidase gene expresses preferentially in the vascular system. Plant Cell Physiol, 2002, 43(1): 108-117.[115] Sasaki K, Ito H, Mitsuhara I, Hiraga S, Seo S, Matsui H, Ohashi Y. A novel wound-responsive cis-element, VWRE, of the vascular system-specific expression of a tobacco peroxidase gene, tpoxN1. Plant Mol Biol, 2006, 62(4-5): 753-768. |
[1] | 王玉杰, 周小坤, 徐丹. 常染色体隐性遗传小头畸形相关蛋白研究进展[J]. 遗传, 2019, 41(10): 905-918. |
[2] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[3] | 谢建平, 韩玉波, 刘钢, 白林泉. 2015年中国微生物遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(9): 765-790. |
[4] | 张博, 陈晓芳, 黄勋, 杨晓. 2015年中国动物遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(6): 467-507. |
[5] | 李元丰, 韩玉波, 曹鹏博, 孟金凤, 李海北, 秦庚, 张锋, 靳光付, 杨勇, 邬玲仟, 平杰, 周钢桥. 2015年中国医学遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(5): 363-390. |
[6] | 陈凡国,李晴晴. 灯刷染色体的研究进展及其在遗传学教学中的思考[J]. 遗传, 2016, 38(2): 170-177. |
[7] | 黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359. |
[8] | 于彦丽, 李艳娇, 庞凯元, 张发军, 孙琦, 李文才, 孟昭东. 植物FKBP基因家族的结构及生物学功能[J]. 遗传, 2014, 36(6): 536-546. |
[9] | 郭奕斌. 基因诊断中测序技术的应用及优缺点[J]. 遗传, 2014, 36(11): 1121-1130. |
[10] | 王宏 李刚波 张大勇 蔺经 盛宝龙 韩金龙 常有宏. 植物HD-Zip转录因子的生物学功能[J]. 遗传, 2013, 35(10): 1179-1188. |
[11] | 宋健,郭勇,于丽杰,邱丽娟. 大豆种皮色相关基因研究进展[J]. 遗传, 2012, 34(6): 687-694. |
[12] | 陈凡国,侯丙凯. 巴氏小体案例在遗传学教学中的应用[J]. 遗传, 2012, 34(4): 503-508. |
[13] | 罗军玲,赵娜,卢长明. 植物Trihelix转录因子家族研究进展[J]. 遗传, 2012, 34(12): 1551-1560. |
[14] | 高运臻,潘玉春. 转录因子CCAAT增强子结合蛋白β(C/EBP β)的研究进展[J]. 遗传, 2011, 33(3): 198-206. |
[15] | 景花,宋沁馨,周国华. MicroRNA定量检测方法的研究进展[J]. 遗传, 2010, 32(1): 31-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: