遗传 ›› 2012, Vol. 34 ›› Issue (11): 1365-1378.doi: 10.3724/SP.J.1005.2012.01365
王金凤1, 张亚平1, 2, 于黎1, 3
收稿日期:
2012-07-27
修回日期:
2012-10-12
出版日期:
2012-11-20
发布日期:
2012-11-25
通讯作者:
于黎
E-mail:yuli1220@yahoo.com.cn
基金资助:
国家自然科学基金项目(编号:U0836603)和新世纪优秀人才支持计划项目资助
WANG Jin-Feng1, ZHANG Ya-Ping1, 2 ,YU Li1, 3
Received:
2012-07-27
Revised:
2012-10-12
Online:
2012-11-20
Published:
2012-11-25
摘要: 猫科动物(Felidae)是食肉目中肉食性最强的一科, 其中许多成员是人们最熟悉、最引人注目的动物, 也是各地的顶级食肉动物。目前37个现存猫科物种中有36个已经被列为濒危和稀有对象。食肉目猫科物种的进化历史是一个快速辐射和较近时期发生的物种形成事件, 使得猫科物种之间系统发育关系的重建非常困难, 一直处于广泛争论的状态。构建可靠的猫科系统发育关系, 具有重要的进化理论意义和保护生物学价值。文章对猫科物种的系统发育学研究进展, 包括来自于形态学特征、细胞学和分子生物学方面的证据做简要概述, 并提出目前研究中存在的问题。以期对今后猫科物种的系统发育方面的进一步研究工作具有指导意义, 并为该类群的生物多样性资源保护提供科学依据。
王金凤,张亚平,于黎. 食肉目猫科物种的系统发育学研究概述[J]. 遗传, 2012, 34(11): 1365-1378.
WANG Jin-Feng, ZHANG Ya-Ping, YU Li. Summary of phylogeny in family Felidae of Carnivora[J]. HEREDITAS, 2012, 34(11): 1365-1378.
[1] Johnson WE, Eizirik E, Pecon-Slattery J, Murphy WJ, Antunes A, Teeling E, O'Brien SJ. The late miocene radiation of modern Felidae: a genetic assessment. Science, 2006, 311(5757): 73-77.[2] Nowak RM. Walker’s Mammals of the World. 5th ed. Baltimore: Johns Hopkins University Press, 1991.[3] Mattern MY, McLennan DA. Phylogeny and speciation of felids. Cladistics, 2000, 16(2): 232-253.[4] Johnson WE, Dratch PA, Martenson JS, O'Brien SJ. Resolution of recent radiations within three evolutionary lineages of Felidae using mitochondrial restriction fragment length polymorphism variation. J Mamm Evol, 1996, 3(2): 97-120.[5] Baillie JEM, Groombridge B, Gärdenfors U, Stattersfield AJ. 1996 IUCN red list of threatened animals. Switzerland: World Conservation Union, Gland, 1996.[6] Masuda R, Lopez JV, Slattery JP, Yuhki N, O'Brien SJ. Molecular phylogeny of mitochondrial cytochrome b and 12S rRNA sequences in the Felidae: ocelot and domestic cat lineages. Mol Phylogenet Evol, 1996, 6(3): 351-365.[7] International Union for Conservation of Nature and Nature Resources(IUCN). Red Book of Endangered Plant and Animal Species. World Conservation Union, Gland, Switzerland, 1986.[8] Savage DE, Russell DE. Mammalian Paleofaunas of the World. London: Addison-Wesley, 1983.[9] Martin LD. Fossil History of the Terrestrial Carnivora. In: Gittleman JL, ed. Carnivore Behavior, Ecology, and Evolution. New York: Cornell University Press, 1988.[10] Johnson WE, O’Brien SJ. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. J Mol Evol, 1997, 44(1): 98-116.[11] Martin LD. Functional morphology and the evolution of cats. Trans Neb Acad Sci, 1980, 8: 141-154.[12] Collier GE, O'Brien SJ. A molecular phylogeny of the Felidae: immunological distance. Evolution, 1985, 39(3): 473-487.[13] Werdelin L. Small pleistocene felines of North America. J Vertebr Paleontol, 1985, 5(3): 194-210.[14] Hunt MH. Biogeography of the Order Carnivora. In: Gittleman JL, ed. Carnivore Behavior, Ecology, and Evolution. New York: Cornell University Press, 1996.[15] Nowak RM, Paradiso JL. Walker's Mammals of the World. 6th ed. Baltimore: Johns Hopkins University Press, 1999.[16] Wayne RK, Van Valkenburgh B, O'brien SJ. Molecular distance and divergence time in carnivores and primates. Mol Biol Evol, 1991, 8(3): 297-319.[17] O'Brien SJ, Johnson WE. The evolution of cats. Sci Am, 2007, 297(1): 68-75.[18] Kurtén B. Fossil puma (Mammalia: Felidae) in North America. Neth J Zool, 1975, 26(4): 502-534.[19] Turner A. Extinction, speciation and dispersal in African larger carnivores, from the late Miocene to Recent. S Afr J Sci, 1985, 81(5): 256-257.[20] Van Valkenburgh B, Grady F, Kurtén B. The plio-pleistocene cheetah-like cat miracinonyx inexpectatus of North America. J Vertebr Paleontol, 1990, 10(4): 434-454.[21] Ficcarelli G. The Villafranchian cheetahs from Tuscany and remarks on the dispersal and evolution of the genus Acinonyx. Palaeontographia Italica, 1984, 73(43): 94-103.[22] Clutton-Brock J. A Natural History of Domesticated Animals. Cambridge: Cambridge University Press, 1987.[23] Pecon Slattery JP, Johnson WE, Goldman D, O'Brien SJ. Phylogenetic reconstruction of South American felids defined by protein electrophoresis. J Mol Evol, 1994, 39(3): 296-305.[24] Guggisberg CAW. Wild Cats of the World. New York: Taplinger Publishing Company, 1975.[25] Kitchener A. The Natural History of the Wild Cats. New York: Comstock Cornell, 1991.[26] Seidensticker J, Lumpkin S, Knight F. Great Cats. London: Rodale Press, 1991.[27] Pocock RI. The classification of existing Felidae. Ann Mag Nat Hist, 1917, 20(119): 329-350.[28] Simpson GG. The principles of classification and a classification of mammals. Bull Amer Mus Nat Hist, 1945, 85: 1-350.[29] Ewer RF. The Carnivores. New York: Cornell University Press, 1973.[30] Hemmer H. The evolutionary systematics of living Felidae: present status and current problems. Carnivore, 1978, 1(1): 71-79.[31] Leyhausen P. Cat Behavior. New York: Garland Press, 1979.[32] Neff NA. The Big Cats: the Paintings of Guy Coheleach. New York: Abrams Press, 1982.[33] Nowark RM, Paradiso JL. Walker’s Mammals of the World. 4 th ed. Baltimore: Johns Hopkins University Press, 1983.[34] Romer AS. Notes and Comments on Vertebrate Paleontology. Chicago: Chicago University Press, 1968.[35] Benveniste RE. The Contributions of Retroviruses to the Study of Mammalian Evolution. In: MacIntyre RJ, ed. Molecular Evolutionary Genetics. New York: Plenum Press, 1985.[36] Wayne RK, Benveniste RE, Janczewski DN, O'Brien SJ. Molecular and Biochemical Evolution of the Carnivora. In: Gittleman JL, ed. Carnivore Behavior, Ecology, and Evolution. New York: Cornell University Press, 1989.[37] Modi WS, O’Brien SJ. Quantitative Cladistic Analyses of Chromosomal Banding Data Among Species in Three Orders of Mammals: Hominoid Primates, Felids and Arvicolid Rodents. In: Gustafson JP, Arpels R, eds. Chromosome Structure and Function. New York: Plenum Press, 1988.[38] O'Brien SJ, Collier GE, Benveniste RE, Nash WG, Newman AK, Simonson JM, Eichelberger MA, Seal US, Janssen D, Bush M. Setting the Molecular Clock in Felidae: the Great Cats Panthera. In: Tilson RL, Seal US, eds. Tigers of the World. New Jersey: Noyes, 1987.[39] Janczewski DN, Modi WS, Stephens JC, O'Brien SJ. Molecular evolution of mitochondrial 12S RNA and cytochrome b sequences in the pantherine lineage of Felidae. Mol Biol Evol, 1995, 12(4): 690-707.[40] Janczewski DN. Phylogenetic Relationships of the Great Cats Based on Mitochondrial DNA Sequence Analysis. Ph. D. thesis. Washington: University of Maryland at College Park, 1992.[41] Kurtén B, Anderson E. Pleistocene mammals of North America. Ithaca: Cornell University Press, 1980.[42] Salles LO. Felid phylogenetics: extant taxa and skull morphology (Felidae, Aeluroidea). Am Mus Novit, 1992 (3047): 1-67.[43] Johnson WE, Culver M, Iriarte JA, Eizirik E, Seymour KL, O'Brien SJ. Tracking the evolution of the elusive Andean mountain cat (Oreailurus jacobita) from mitochondrial DNA. J Hered, 1998, 89(3): 227-232.[44] Kurten B. The Pleistocene Mammals of Europe III. Chicago: Aldine, 1968.[45] Hemmer H. Fossil History of Living Felidae. In: Eaton RL, ed. The World’s cats. Seattle: Carnivore Reasearch Institute Burke Museum, 1976.[46] Wurster-Hill DH, Centerwall WR. The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids. Cytogenet Cell Genet, 1982, 34(1-2): 178-192.[47] Yu L, Li QW, Ryder OA, Zhang YP. Phylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genes. Mol Phylogenet Evol, 2004, 33(3): 694-705.[48] Bininda-Emonds OR, Gittleman JL, Purvis A. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev Camb Philos Soc, 1999, 74(2): 143-175.[49] Wei L, Wu XB, Zhu LX, Jiang ZG. Mitogenomic analysis of the genus Panthera. Sci China Life Sci, 2011, 54(10): 917-930.[50] Pecon-Slattery J, Pearks Wilkerson AJ, Murphy WJ, O'Brien SJ. Phylogenetic assessment of introns and SINEs within the Y chromosome using the cat family felidae as a species tree. Mol Biol Evol, 2004, 21(12): 2299-2309.[51] Pecon Slattery J, O'Brien SJ. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation. Genetics, 1998, 148(3): 1245-1255.[52] King V, Goodfellow PN, Pearks Wilkerson AJ, Johnson WE, O'Brien SJ, Pecon-Slattery J. Evolution of the male- determining gene SRY within the cat family Felidae. Genetics, 2007, 175(4): 1855-1867.[53] Wurster-Hill DH, Gray CW. The interrelationships of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet Cell Genet, 1975, 15(5): 306-331.[54] Nash WG, O'Brien SJ. Conserved regions of homologous G-banded chromosomes between orders in mammalian evolution: carnivores and primates. Proc Natl Acad Sci USA, 1982, 79(21): 6631-6635.[55] Dutrillaux B, Couturier J. The ancestral karyotype of Carnivora: comparison with that of platyrrhine monkeys. Cytogenet Cell Genet, 1983, 35(3): 200-208.[56] Weigel I. Das Fellmuster der wildlebenden Katzenarten und der Hauskatze in vergleichender und stammesgeschichtlicher Hinsicht. Saügetierkundige Mitteilungen, 1961.[57] Herrington SJ. Phylogenetic Relationships of the Wild Cats of the World. Ph. D. thesis. Lawrence: University of Kansas, 1986.[58] Christiansen P. Phylogeny of the great cats (Felidae: Pantherinae), and the influence of fossil taxa and missing characters. Cladistics, 2008, 24(6): 977-992.[59] Reeves RH, O'Brien SJ. Molecular genetic characterization of the RD-114 gene family of endogenous feline retroviral sequences. J Virol, 1984, 52(1): 164-171.[60] Bininda-Emonds ORP, Decker-Flum DM, Gittleman JL. The utility of chemical signals as phylogenetic characters: an example from the Felidae. Biol J Linn Soc, 2001, 72(1): 1-15.[61] Bargelloni L, Marcato S, Zane L, Patarnello T. Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol, 2000, 49(1): 114-129.[62] Drovetski SV, Zink RM, Fadeev IV, Nesterov EV, Koblik EA, Red'kin YA, Rohwer S. Mitochondrial phylogeny of Locustella and related genera. J Avian Biol, 2004, 35(2): 105-110.[63] Sturmbauer C, Meyer A. Mitochondrial phylogeny of the endemic mouthbrooding lineages of cichlid fishes from Lake Tanganyika in eastern Africa. Mol Biol Evol, 1993, 10(4): 751-768.[64] Zhou ZJ, Ye HY, Huang Y, Shi FM. The phylogeny of Orthoptera inferred from mtDNA and description of Elimaea cheni (Tettigoniidae: Phaneropterinae) mitogenome. J Genet Genomics, 2010, 37(5): 315-324.[65] 曹联飞, 牛德芳, 和绍禹, 匡海鸥, 胡福良. 基于线粒体和核基因序列的蜜蜂属系统发育分析. 遗传, 2012, 34(8): 1057-1063.[66] Masuda R, Yoshida MC, Shinyashiki F, Bando G. Molecular phylogenetic status of the Iriomote cat Felis iriomotensis, inferred from mitochondrial DNA sequence analysis. Zoolog Sci, 1994, 11(4): 597-604.[67] Masuda R, Yoshida MC. Two Japanese wildcats, the Tsushima cat and the Iriomote cat, show the same mitochondrial DNA lineage as the leopard cat Felis bengalensis. Zoolog Sci, 1995, 12(5): 655-659.[68] Imaizumi Y. A new genus and species of cat from Iriomote, Ryukyu Islands. J Mamm Soc Japan, 1967, 3(4): 74-107.[69] Glass GE, Todd NB. Quasi-continuous variation of the second upper premolar in Felis bengalensis Kerr, 1792 and its significance for some fossil lynxes. Zeitschrift für Saugetierkünde, 1977, 42: 36-44.[70] Wurster-Hill DH, Doi T, Izawa M, Ono Y. Banded chromosome study of the Iriomote cat. J Hered, 1987, 78(2): 105-107.[71] Suzuki H, Hosoda T, Sakurai S, Tsuchiya K, Munechika I, Korablev VP. Phylogenetic relationship between the Iriomote cat and the leopard cat, Felis bengalensis, based on the ribosomal DNA. Jpn J Genet, 1994, 69(4): 397-406.[72] Jae-Heup K, Eizirik E, O'Brien SJ, Johnson WE. Structure and patterns of sequence variation in the mitochondrial DNA control region of the great cats. Mitochondrion, 2001, 1(3): 279-292.[73] Moore WS. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution, 1995, 49(4): 718-726.[74] Page RD. Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. Mol Phylogenet Evol, 2000, 14(1): 89-106.[75] Saitou N, Nei M. The number of nucleotides required to determine the branching order of three species, with special reference to the human-chimpanzee-gorilla divergence. J Mol Evol, 1986, 24(1-2): 189-204.[76] Pamilo P, Nei M. Relationships between gene trees and species trees. Mol Biol Evol, 1988, 5(5): 568-583.[77] Wu CI. Inferences of species phylogeny in relation to segregation of ancient polymorphisms. Genetics, 1991, 127(2): 429-435.[78] Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University, 2000.[79] 吕宝忠, 钟扬, 高莉萍. 分子进化与系统发育. 北京: 高等教育出版社, 2002.[80] Yu L, Zhang YP. Phylogenetic studies of pantherine cats (Felidae) based on multiple genes, with novel application of nuclear β-fibrinogen intron 7 to carnivores. Mol Phylogenet Evol, 2005, 35(2): 483-495.[81] Stanhope MJ, Czelusniak J, Si JS, Nickerson J, Goodman M. A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Mol Phylogenet Evol, 1992, 1(2): 148-160.[82] Stanhope MJ, Smith MR, Waddell VG, Porter CA, Shivji MS, Goodman M. Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: convincing evidence for several superordinal clades. J Mol Evol, 1996, 43(2): 83-92.[83] Smith MR, Shivji MS, Waddell VG, Stanhope MJ. Phylogenetic evidence from the IRBP gene for the paraphyly of toothed whales, with mixed support for Cetacea as a suborder of Artiodactyla. Mol Biol Evol, 1996, 13(7): 918-922.[84] Springer MS, Burk A, Kavanagh JR, Waddell VG, Stanhope MJ. The interphotoreceptor retinoid binding protein gene in therian mammals: implications for higher level relationships and evidence for loss of function in the marsupial mole. Proc Natl Acad Sci USA, 1997, 94(25): 13754-13759.[85] Harris EE, Disotell TR. Nuclear gene trees and the phylogenetic relationships of the mangabeys (Primates: Papionini). Mol Biol Evol, 1998, 15(7): 892-900.[86] Springer MS, DeBry RW, Douady C, Amrine HM, Madsen O, De Jong WW, Stanhope MJ. Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. Mol Biol Evol, 2001, 18(2): 132-143.[87] Serizawa K, Suzuki H, Tsuchiya K. A phylogenetic view on species radiation in Apodemus inferred from variation of nuclear and mitochondrial genes. Bioche Genet, 2000, 38(1-2): 27-40.[88] Suzuki H, Tsuchiya K, Takezaki N. A molecular phylogenetic framework for the Ryukyu endemic rodents Tokudaia osimensis and Diplothrix legata. Mol Phylogenet Evol, 2000, 15(1): 15-24.[89] DeBry RW, Sagel RM. Phylogeny of Rodentia (Mammalia) inferred from the nuclear-encoded gene IRBP. Mol Phylogenet Evol, 2001, 19(2): 290-301.[90] Weksler M. Phylogeny of Neotropical oryzomyine rodents (Muridae: Sigmodontinae) based on the nuclear IRBP exon. Mol Phylogenet Evol, 2003, 29(2): 331-349.[91] Flynn JJ, Nedbal MA. Phylogeny of the Carnivora (Mammalia): congruence vs incompatibility among multiple data sets. Mol Phylogenet Evol, 1998, 9(3): 414-426.[92] Flynn JJ, Nedbal MA, Dragoo JW, Honeycutt RL. Whence the red panda? Mol Phylogenet Evol, 2000, 17(2): 190-199.[93] Walton AH, Nedbal MA, Honeycutt RL. Evidence from intron 1 of the nuclear transthyretin (Prealbumin) gene for the phylogeny of African mole-rats (Bathyergidae). Mol Phylogenet Evol, 2000, 16(3): 467-474.[94] Yoder AD, Burns MM, Zehr S, Delefosse T, Veron G, Goodman SM, Flynn JJ. Single origin of Malagasy Carnivora from an African ancestor. Nature, 2003, 421(6924): 734-737.[95] Prychitko TM, Moore WS. The utility of DNA sequences of an intron from the β-fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae). Mol Phylogenet Evol, 1997, 8(2): 193-204.[96] Creer S, Malhotra A, Thorpe RS. Assessing the phylogenetic utility of four mitochondrial genes and a nuclear intron in the Asian pit viper genus, Trimeresurus: separate, simultaneous, and conditional data combination analyses. Mol Biol Evol, 2003, 20(8): 1240-1251.[97] Davis BW, Li G, Murphy WJ. Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae). Mol Phylogenet Evol, 2010, 56(1): 64-76.[98] Kim JH, Antunes A, Luo SJ, Menninger J, Nash WG, O'Brien SJ, Johnson WE. Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species. Gene, 2006, 366(2): 292-302.[99] Eisen JA, Hanawalt PC. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res, 1999, 435(3): 171-213. |
[1] | 邹文超, 沈林林, 沈建国, 蔡伟, 詹家绥, 高芳銮. 马铃薯Y病毒多基因系统发育分析及其在株系鉴定中的应用[J]. 遗传, 2017, 39(10): 918-929. |
[2] | 刘芳, 宋小珍, 谢华, 陈晓丽. 体细胞变异对神经系统常见肿瘤和发育异常类疾病的致病性[J]. 遗传, 2016, 38(3): 196-205. |
[3] | 杨献伟,杨瑞馥,崔玉军. 细菌基因组同源重组:量化与鉴定[J]. 遗传, 2016, 38(2): 137-143. |
[4] | 吉克伍合,武泽峰,范三红,奚绪光. 真核生物FANCJ-like蛋白的结构与进化[J]. 遗传, 2015, 37(2): 204-213. |
[5] | 李雪娟, 黄原, 雷富民. 山鹧鸪属鸟类线粒体基因组的比较及系统发育研究[J]. 遗传, 2014, 36(9): 912-920. |
[6] | 王章群, 解增言, 蔡应繁, 舒坤贤, 黄飞飞. 系统发育基因组学研究进展[J]. 遗传, 2014, 36(7): 669-678. |
[7] | 许美芬, 何轶群, 耿军伟, 孟燕子, 于涵, 林枝, 施苏雪, 薛凌, 卢中秋, 管敏鑫. 两个携带线粒体tRNAMet/tRNAGlnA4401G和tRNACysG5821A突变的中国汉族原发性高血压家系的临床及分子遗传学特征[J]. 遗传, 2014, 36(2): 127-134. |
[8] | 海萨·艾也力汗,郭焱,孟玮,杨天燕,马燕武. 新疆裂腹鱼类的系统发生关系及物种分化时间[J]. 遗传, 2014, 36(10): 1013-1020. |
[9] | 张初琴,陈波蓓,陈迎迎,刘学军,郑静,高金建,黄赛瑜,南奔宇,章誉耀,余啸,管敏鑫. 不同年龄段非综合征性耳聋常见基因检测及临床表型分析[J]. 遗传, 2013, 35(3): 352-358. |
[10] | 马志杰,钟金城,韩建林,徐惊涛,刘仲娜,白文林. 牦牛分子遗传多样性研究进展[J]. 遗传, 2013, 35(2): 151-160. |
[11] | 张阿梅 姚永刚. Leber遗传性视神经病变研究进展和挑战[J]. 遗传, 2013, 35(2): 123-135. |
[12] | 金逍逍 孙悦娜 王日昕 汤达 赵盛龙 徐田军. 虾虎鱼类线粒体全基因组序列结构特征分析及系统发育关系探讨[J]. 遗传, 2013, 35(12): 1391-1402. |
[13] | 曹联飞,牛德芳,和绍禹,匡海鸥,胡福良. 基于线粒体和核基因序列的蜜蜂属系统发育分析[J]. 遗传, 2012, 34(8): 1057-1063. |
[14] | 杨泽民,陈蔚文. 幽门螺杆菌vacA和cagA基因全长分子系统发育分析[J]. 遗传, 2012, 34(7): 863-871. |
[15] | 刘庆辉,郭振国,任嘉红. 原核生物eno基因在系统进化中应用及水平转移分析[J]. 遗传, 2012, 34(7): 907-918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: