遗传 ›› 2021, Vol. 43 ›› Issue (8): 737-746.doi: 10.16288/j.yczz.21-167
收稿日期:
2021-05-08
修回日期:
2021-07-06
出版日期:
2021-08-20
发布日期:
2021-07-23
通讯作者:
徐寒梅
E-mail:cxy000111@qq.com;13913925346@126.com
作者简介:
陈相颖,在读硕士研究生,专业方向:微生物与生化药学。E-mail: 基金资助:
Xiangying Chen(), Mengwei Li, Ying Wang, Quan Chen, Hanmei Xu(
)
Received:
2021-05-08
Revised:
2021-07-06
Online:
2021-08-20
Published:
2021-07-23
Contact:
Xu Hanmei
E-mail:cxy000111@qq.com;13913925346@126.com
Supported by:
摘要:
已有的研究表明,生命体中存在着大量的非编码RNA (non-coding RNA, ncRNA),先前被错误注释为ncRNA的分子序列中实际上包含小的开放阅读框(short open reading frame, sORF),部分sORF可转录并翻译成进化保守的微肽(micropeptide),这些sORF由于序列较短和研究技术手段的限制而被忽略。迄今为止,已在生命体中发现一些sORF编码的功能各异的微肽,它们对生命活动的调控起着重要作用。本文对近年来发现的功能性微肽进行综述,介绍了本课题组发现新型微肽MIAC (micropeptide inhibiting actin cytoskeleton)的过程,同时总结了研究潜在微肽的相关技术,以期为研究人员利用相关技术发现新微肽提供借鉴和参考。
陈相颖, 李梦玮, 王颖, 陈权, 徐寒梅. 小开放阅读框编码微肽的研究进展[J]. 遗传, 2021, 43(8): 737-746.
Xiangying Chen, Mengwei Li, Ying Wang, Quan Chen, Hanmei Xu. Progress on sORF-encoded micropeptides[J]. Hereditas(Beijing), 2021, 43(8): 737-746.
表1
功能性微肽的发现"
基因 | 微肽 | 长度(氨基酸) | 作用 | 啊啊啊啊 |
---|---|---|---|---|
鼠AK009351、人LINC00948 | MLN | 46 | 抑制SERCA,调节钙离子转运 | [6] |
1110017F19Rik/SMIM6 | ELN | 56 | 抑制SERCA,调节钙离子转运 | [5] |
1810037I17Rik | ALN | 65 | 抑制SERCA,调节钙离子转运 | [5] |
鼠NONMMUG026737、人LOC100507537 | DWORF | 34 | 激活SERCA,调节钙离子转运 | [8] |
pncr003:2L | Scl | 28/29 | 调节钙离子转运,影响肌肉收缩 | [7] |
鼠1500011K16Rik、人LINC00116 | MOXI | 56 | 增强脂肪酸β-氧化作用 | [10] |
LINC00116 | Mtln | 56 | 增强呼吸效率 | [11] |
12S rRNA | MOTS-c | 16 | 调节胰岛素敏感性 | [9] |
LOC101929726 | Minion | 84 | 促进成肌细胞融合和肌肉发育 | [12] |
LOC101929726 | Myomixer | 84 | 促进成肌细胞融合和肌肉发育 | [13] |
LOC100506013 | Toddler | 54 | 激活APJ/Apelin受体促进胚胎发育 | [14] |
polished rice(pri) | Pri | 11/32 | 促进胚胎发育中的表皮形成 | [15] |
Tarsal-less(tal) | Tal | 11 | 控制基因表达和组织折叠 | [16] |
LINC00961 | SPAR | 90 | 抑制mTORC1和肌肉再生 | [17] |
hemotion | Hemotion | 88 | 促进吞噬细胞吞噬作用 | [18] |
PIGBOS | PIGBOS | 54 | 调节内质网应激反应 | [19] |
SMIM22 | CASIMO1 | 83 | 促进乳腺癌 | [20] |
HOXB-AS3 | HOXB-AS3 | 53 | 抑制结肠癌 | [21] |
LINC00998 | SMIM30 | 59 | 促进肝癌 | [22] |
LINC00278 | YY1BM | 21 | 抑制食管鳞状细胞癌 | [23] |
AC025154.2 | MIAC | 51 | 抑制头颈鳞状细胞癌 | [24] |
LINC01420 | NoBody | 68 | 促进无义介导的mRNA衰变 | [38] |
MIR155HG | miPEP155(P155) | 17 | 调节抗原呈递细胞的抗原转运和呈递 | [45] |
[1] |
Crick F. Central dogma of molecular biology. Nature, 1970, 227(5258):561-563.
doi: 10.1038/227561a0 |
[2] |
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue CH, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang HE, Wrobel J, Yu YB, Ruan XA, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan YJ, Wold B, Carninci P, Guigó R, Gingeras TR. Landscape of transcription in human cells. Nature, 2012, 489(7414):101-108.
doi: 10.1038/nature11233 |
[3] |
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414):57-74.
doi: 10.1038/nature11247 |
[4] |
Couso JP, Patraquim P. Classification and function of small open reading frames. Nat Rev Mol Cell Biol, 2017, 18(9):575-589.
doi: 10.1038/nrm.2017.58 |
[5] |
Anderson DM, Makarewich CA, Anderson KM, Shelton JM, Bezprozvannaya S, Bassel-Duby R, Olson EN. Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Sci Signal, 2016, 9(457): ra119.
doi: 10.1126/scisignal.aaj1460 |
[6] |
Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, Olson EN. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell, 2015, 160(4):595-606.
doi: S0092-8674(15)00010-0 pmid: 25640239 |
[7] |
Magny EG, Pueyo JI, Pearl FMG, Cespedes MA, Niven JE, Bishop SA, Couso JP. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science, 2013, 341(6150):1116-1120.
doi: 10.1126/science.1238802 |
[8] |
Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu FF, Reese AL, McAnally JR, Chen XW, Kavalali ET, Cannon SC, Houser SR, Bassel-Duby R, Olson EN. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351(6270):271-275.
doi: 10.1126/science.aad4076 |
[9] |
Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan JX, Kim SJ, Mehta H, Hevener AL, de Cabo R, Cohen P. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab, 2015, 21(3):443-454.
doi: 10.1016/j.cmet.2015.02.009 |
[10] |
Makarewich CA, Baskin KK, Munir AZ, Bezprozvannaya S, Sharma G, Khemtong C, Shah AM, McAnally JR, Malloy CR, Szweda LI, Bassel-Duby R, Olson EN. MOXI is a mitochondrial micropeptide that enhances fatty acid beta-oxidation. Cell Rep, 2018, 23(13):3701-3709.
doi: S2211-1247(18)30822-2 pmid: 29949755 |
[11] |
Stein CS, Jadiya P, Zhang XM, McLendon JM, Abouassaly GM, Witmer NH, Anderson EJ, Elrod JW, Boudreau RL. Mitoregulin: a lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency. Cell Rep, 2018, 23(13): 3710-3720.e8.
doi: 10.1016/j.celrep.2018.06.002 |
[12] |
Zhang Q, Vashisht AA, O'Rourke J, Corbel SY, Moran R, Romero A, Miraglia L, Zhang J, Durrant E, Schmedt C, Sampath SC, Sampath SC. The microprotein Minion controls cell fusion and muscle formation. Nat Commun, 2017, 8:15664.
doi: 10.1038/ncomms15664 pmid: 28569745 |
[13] |
Bi PP, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR, Shelton JM, Sánchez-Ortiz E, Bassel-Duby R, Olson EN. Control of muscle formation by the fusogenic micropeptide myomixer. Science, 2017, 356(6335):323-327.
doi: 10.1126/science.aam9361 |
[14] |
Pauli A, Norris ML, Valen E, Chew GL, Gagnon JA, Zimmerman S, Mitchell A, Ma J, Dubrulle J, Reyon D, Tsai SQ, Joung JK, Saghatelian A, Schier AF. Toddler: an embryonic signal that promotes cell movement via Apelin receptors. Science, 2014, 343(6172):1248636.
doi: 10.1126/science.1248636 |
[15] |
Kondo T, Hashimoto Y, Kato K, Inagaki S, Hayashi S, Kageyama Y. Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA. Nat Cell Biol, 2007, 9(6):660-665.
doi: 10.1038/ncb1595 |
[16] |
Galindo MI, Pueyo JI, Fouix S, Bishop SA, Couso JP. Peptides encoded by short ORFs control development and define a new eukaryotic gene family. PLoS Biol, 2007, 5(5):e106.
doi: 10.1371/journal.pbio.0050106 |
[17] |
Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, Saghatelian A, Nakayama KI, Clohessy JG, Pandolfi PP. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 2017, 541(7636):228-232.
doi: 10.1038/nature21034 |
[18] |
Pueyo JI, Magny EG, Sampson CJ, Amin U, Evans IR, Bishop SA, Couso JP. Hemotin, a regulator of phagocytosis encoded by a small ORF and conserved across metazoans. PLoS Biol, 2016, 14(3):e1002395.
doi: 10.1371/journal.pbio.1002395 |
[19] |
Chu Q, Martinez TF, Novak SW, Donaldson CJ, Tan D, Vaughan JM, Chang TN, Diedrich JK, Andrade L, Kim A, Zhang T, Manor U, Saghatelian A. Regulation of the ER stress response by a mitochondrial microprotein. Nat Commun, 2019, 10(1):4883.
doi: 10.1038/s41467-019-12816-z |
[20] |
Polycarpou-Schwarz M, Groß M, Mestdagh P, Schott J, Grund SE, Hildenbrand C, Rom J, Aulmann S, Sinn HP, Vandesompele J, Diederichs S. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene, 2018, 37(34):4750-4768.
doi: 10.1038/s41388-018-0281-5 pmid: 29765154 |
[21] |
Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang HY, Hu M, Zhu HF, Yan GR. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell, 2017, 68(1): 171- 184.e6.
doi: 10.1016/j.molcel.2017.09.015 |
[22] |
Pang YN, Liu ZY, Han H, Wang BL, Li W, Mao CB, Liu SR. Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation. J Hepatol, 2020, 73(5):1155-1169.
doi: 10.1016/j.jhep.2020.05.028 |
[23] |
Wu SQ, Zhang LY, Deng JQ, Guo BB, Li F, Wang YR, Wu R, Zhang SH, Lu JC, Zhou YF. A novel micropeptide encoded by Y-linkedLINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma. Cancer Res, 2020, 80(13):2790-2803.
doi: 10.1158/0008-5472.CAN-19-3440 |
[24] |
Li MW, Li X, Zhang YN, Wu HM, Zhou HZ, Ding X, Zhang XM, Jin XR, Wang Y, Yin XQ, Li CC, Yang PW, Xu HM. Micropeptide MIAC inhibits HNSCC progression by Interacting with aquaporin 2. J Am Chem Soc, 2020, 142(14):6708-6716.
doi: 10.1021/jacs.0c00706 |
[25] |
Sieber P, Platzer M, Schuster S. The definition of open reading frame revisited. Trends Genet, 2018, 34(3):167-170.
doi: 10.1016/j.tig.2017.12.009 |
[26] |
Chen J, Brunner AD, Cogan JZ, Nuñez JK, Fields AP, Adamson B, Itzhak DN, Li JY, Mann M, Leonetti MD, Weissman JS. Pervasive functional translation of noncanonical human open reading frames. Science, 2020, 367(6482):1140-1146.
doi: 10.1126/science.aay0262 pmid: 32139545 |
[27] |
Jackson R, Kroehling L, Khitun A, Bailis W, Jarret A, York AG, Khan OM, Brewer JR, Skadow MH, Duizer C, Harman CCD, Chang L, Bielecki P, Solis AG, Steach HR, Slavoff S, Flavell RA. The translation of non-canonical open reading frames controls mucosal immunity. Nature, 2018, 564(7736):434-438.
doi: 10.1038/s41586-018-0794-7 |
[28] |
Orr MW, Mao YH, Storz G, Qian SB. Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res, 2020, 48(3):1029-1042.
doi: 10.1093/nar/gkz734 |
[29] |
Ladoukakis E, Pereira V, Magny EG, Eyre-Walker A, Couso JP. Hundreds of putatively functional small open reading frames in drosophila. Genome Biol, 2011, 12(11):R118.
doi: 10.1186/gb-2011-12-11-r118 |
[30] |
Andrews SJ, Rothnagel JA. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet, 2014, 15(3):193-204.
doi: 10.1038/nrg3520 pmid: 24514441 |
[31] |
Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ, Karger AD, Budnik BA, Rinn JL, Saghatelian A. Peptidomic discovery of short open reading frame- encoded peptides in human cells. Nat Chem Biol, 2013, 9(1):59-64.
doi: 10.1038/nchembio.1120 pmid: 23160002 |
[32] |
Dufresne SS, Dumont NA, Boulanger-Piette A, Fajardo VA, Gamu D, Kake-Guena SA, David RO, Bouchard P, Lavergne É, Penninger JM, Pape PC, Tupling AR, Frenette J. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles. Am J Physiol Cell Physiol, 2016, 310(8):C663-C672.
doi: 10.1152/ajpcell.00285.2015 |
[33] |
Gusic M, Prokisch H. ncRNAs: new players in mitochondrial health and disease? Front Genet, 2020, 11:95.
doi: 10.3389/fgene.2020.00095 |
[34] |
Krauss RS, Joseph GA, Goel AJ. Keep your friends close: cell-cell contact and skeletal myogenesis. Cold Spring Harb Perspect Biol, 2017, 9(2):a029298.
doi: 10.1101/cshperspect.a029298 |
[35] |
Millay DP, Gamage DG, Quinn ME, Min YL, Mitani Y, Bassel-Duby R, Olson EN. Structure-function analysis of myomaker domains required for myoblast fusion. Proc Natl Acad Sci USA, 2016, 113(8):2116-2121.
doi: 10.1073/pnas.1600101113 |
[36] |
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang PR, Glen RC, Maguire JJ, Davenport AP. International union of basic and clinical pharmacology. CVII. structure and pharmacology of the Apelin receptor with a recommendation that Elabela/Toddler is a second endogenous peptide ligand. Pharmacol Rev, 2019, 71(4):467-502.
doi: 10.1124/pr.119.017533 pmid: 31492821 |
[37] |
Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011, 334(6059):1081-1086.
doi: 10.1126/science.1209038 pmid: 22116877 |
[38] |
D'Lima NG, Ma J, Winkler L, Chu Q, Loh KH, Corpuz EO, Budnik BA, Lykke-Andersen J, Saghatelian A, Slavoff SA. A human microprotein that interacts with the mRNA decapping complex. Nat Chem Biol, 2017, 13(2):174-180.
doi: 10.1038/nchembio.2249 pmid: 27918561 |
[39] |
Makarewich CA, Olson EN. Mining for micropeptides. Trends Cell Biol, 2017, 27(9):685-696.
doi: S0962-8924(17)30064-8 pmid: 28528987 |
[40] | Li X, Li MW, Zhang YN, Xu HM. Common cancer genetic analysis methods and application study based on TCGA database. Hereditas(Beijing), 2019, 41(3):234-242. |
李鑫, 李梦玮, 张依楠, 徐寒梅. 常用肿瘤基因分析方法及基于TCGA数据库的分析应用. 遗传, 2019, 41(3):234-242. | |
[41] |
Wang LG, Park HJ, Dasari S, Wang SQ, Kocher JP, Li W. CPAT: coding-potential assessment tool using an alignment- free logistic regression model. Nucleic Acids Res, 2013, 41(6):e74.
doi: 10.1093/nar/gkt006 |
[42] |
Hanada K, Akiyama K, Sakurai T, Toyoda T, Shinozaki K, Shiu SH. sORF finder: a program package to identify small open reading frames with high coding potential. Bioinformatics, 2010, 26(3):399-400.
doi: 10.1093/bioinformatics/btp688 |
[43] |
Lin MF, Jungreis I, Kellis M. PhyloCSF: a comparative genomics method to distinguish protein coding and non- coding regions. Bioinformatics, 2011, 27(13):i275-i282.
doi: 10.1093/bioinformatics/btr209 |
[44] |
Skarshewski A, Stanton-Cook M, Huber T, Al Mansoori S, Smith R, Beatson SA, Rothnagel JA,. uPEPperoni: an online tool for upstream open reading frame location and analysis of transcript conservation. BMC Bioinformatics, 2014, 15:36.
doi: 10.1186/1471-2105-15-36 pmid: 24484385 |
[45] | Niu LM, Lou FZ, Sun Y, Sun LB, Cai XJ, Liu ZY, Zhou H, Wang H, Wang ZK, Bai J, Yin QQ, Zhang JX, Chen LJ, Peng DH, Xu ZY, Gao YY, Tang SB, Fan L, Wang HL. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci Adv, 2020, 6(21): eaaz2059. |
[46] |
Ingolia NT. Ribosome footprint profiling of translation throughout the genome. Cell, 2016, 165(1):22-33.
doi: 10.1016/j.cell.2016.02.066 |
[47] |
Wilson BA, Masel J. Putatively noncoding transcripts show extensive association with ribosomes. Genome Biol Evol, 2011, 3:1245-1252.
doi: 10.1093/gbe/evr099 |
[48] |
Aspden JL, Eyre-Walker YC, Phillips RJ, Amin U, Mumtaz MAS, Brocard M, Couso JP. Extensive translation of small open reading frames revealed by Poly-Ribo-Seq. eLife, 2014, 3:e03528.
doi: 10.7554/eLife.03528 |
[49] |
Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 2013, 154(1):240-251.
doi: 10.1016/j.cell.2013.06.009 |
[50] |
Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature, 2016, 537(7620):347-355.
doi: 10.1038/nature19949 |
[51] |
Menschaert G, Fenyö D. Proteogenomics from a bioinformatics angle: a growing field. Mass Spectrom Rev, 2017, 36(5):584-599.
doi: 10.1002/mas.21483 pmid: 26670565 |
[52] |
Housman G, Ulitsky I. Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs. Biochim Biophys Acta, 2016, 1859(1):31-40.
doi: 10.1016/j.bbagrm.2015.07.017 pmid: 26265145 |
[53] |
Yang J, Meng XD, Pan JC, Jiang N, Zhou CW, Wu ZH, Gong ZH. CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biol, 2018, 15(1):35-43.
doi: 10.1080/15476286.2017.1391443 pmid: 29028415 |
[1] | 吕雪, 李帮洁, 徐寒梅. 功能性微肽通量发现和功能验证的研究进展[J]. 遗传, 2022, 44(6): 478-490. |
[2] | 熊婉迪, 徐开宇, 陆林, 李家立. 长链非编码RNA在阿尔茨海默病中的研究进展[J]. 遗传, 2022, 44(3): 189-197. |
[3] | 程敏, 张静, 曹鹏博, 周钢桥. 缺氧相关长链非编码RNA作为肝癌预后预测标志物的潜在价值[J]. 遗传, 2022, 44(2): 153-167. |
[4] | 马剑峰, 甘麦邻, 朱砺, 沈林園. 转运RNA衍生的小RNA功能及其研究方法[J]. 遗传, 2021, 43(12): 1107-1120. |
[5] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[6] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[7] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[8] | 李恩惠,赵欣,张策,刘威. 脆性X智力低下蛋白参与非编码RNA通路的研究进展[J]. 遗传, 2018, 40(2): 87-94. |
[9] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[10] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[11] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[12] | 李静秋, 杨杰, 周平, 乐燕萍, 龚朝辉. 竞争性内源RNA的生物学功能及其调控[J]. 遗传, 2015, 37(8): 756-764. |
[13] | 黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359. |
[14] | 杨峰, 易凡, 曹慧青, 梁子才, 杜权. 长链非编码RNA研究进展[J]. 遗传, 2014, 36(5): 456-468. |
[15] | 李灵, 宋旭. 长链非编码RNA在生物体中的调控作用[J]. 遗传, 2014, 36(3): 228-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: