遗传 ›› 2022, Vol. 44 ›› Issue (6): 478-490.doi: 10.16288/j.yczz.22-007
收稿日期:
2022-02-28
修回日期:
2022-04-02
出版日期:
2022-06-20
发布日期:
2022-04-14
通讯作者:
徐寒梅
E-mail:13837189145@163.com;xuhanmei6688@126.com
作者简介:
吕雪,在读硕士研究生,专业方向:微生物与生化药学。E-mail: 基金资助:
Xue Lv(), Bangjie Li, Hanmei Xu()
Received:
2022-02-28
Revised:
2022-04-02
Online:
2022-06-20
Published:
2022-04-14
Contact:
Xu Hanmei
E-mail:13837189145@163.com;xuhanmei6688@126.com
Supported by:
摘要:
随着计算生物学和深度测序技术的飞速发展,愈来愈多的研究表明大量之前未被注释、隐藏在非编码RNA中的非经典开放阅读框(open reading frame, ORF)具有编码功能性微肽(micropeptide)的能力。本文对微肽的基因来源、生物性质、预测方法和功能验证的研究现状和技术策略展开综述,以期为后续开展微肽发现、研究调控机制以及新靶点、生物标志物的开发等提供理论基础和参考依据。
吕雪, 李帮洁, 徐寒梅. 功能性微肽通量发现和功能验证的研究进展[J]. 遗传, 2022, 44(6): 478-490.
Xue Lv, Bangjie Li, Hanmei Xu. Research progress on high throughput discovery and functional verification of functional micropeptides[J]. Hereditas(Beijing), 2022, 44(6): 478-490.
表1
微肽的预测算法"
技术名称 | 算法特征描述 | 参考文献 |
---|---|---|
uPEPperoni | 一种通过检测mRNA中5′-UTR保守性sORF预测潜在微肽的计算方法 | [ |
PhyloCSF | 一种检测跨物种sORF的进化特征和密码子替换频率作为评分以筛选潜在微肽的方法 | [ |
Ribosome releasing scores (RRS) | 一种基于总Ribo-Seq读段数在开放阅读框和3′-UTR之间的比例作为潜在微肽评分指标的计算方法 | [ |
Fragment length organisation similarity score (FLOSS) | 一种基于编码基因和非编码RNA之间核糖体片段RPF长度分布差异以预测微肽的方法 | [ |
ORF regression algorithm for translational evaluation of RPFs (ORF-RATER) | 一种基于比较核糖体占据的模式来量化翻译的回归算法以预测潜在微肽的方法 | [ |
Ribo taper | 一种采用多锥光谱分析方法从原始数据中获得具有3-nt周期性特征的序列预测微肽的的计算方法 | [ |
Translated ORF classifier (TOC) | 一种评估转录本中ORF编码潜力的随机森林分类器以预测潜在微肽的方法 | [ |
ORFScore | 一种分析跨ORF翻译核糖体的3碱基周期性预测微肽的评分方法 | [ |
RiboHMM | 一种测定核糖体保护片段丰度及其周期性概率模型预测微肽的计算方法 | [ |
SPECtre | 一种基于光谱相干性分类器对核糖体覆盖的整体周期性进行建模分析预测微肽的计算方法 | [ |
RibORF | 一种基于三碱基周期性和密码子间一致性的支持向量机分类器以预测ORF序列 | [ |
RB-BP | 一种采用无监督的贝叶斯方法从核糖体谱中预测翻译的ORF的方法 | [ |
RiboCode | 一种基于全翻译组从头注释的三核苷酸周期性定量分析方法 | [ |
PhastCons | 一种基于多序列比对的方法结合了系统发育距离和碱基替代率模型以预测潜在微肽的方法 | [ |
Coding region identification tool invoking comparative analysis (CRITICA) | 一种成对比对同源区域的纯化选择分析与核苷酸序列组成分析相结合预测微肽的算法 | [ |
Coding potential calculator (CPC) | 一种支持向量学习机分类器且结合六个序列特征以区分编码与非编码ORF预测微肽的计算方法 | [ |
[1] | Ng PC, Kirkness EF. Whole genome sequencing. Methods Mol Biol, 2010, 628:215-226. |
[2] | Liu SH, Qiu J, He WT, Geng C, He GF, Liu CC, Cai D, Liu XP, Tian B, Pan HZ. TUG1 long non-coding RNA enlists the USF1 transcription factor to overexpress ROMO1 leading to hepatocellular carcinoma growth and metastasis. Med Comm, 2020, 1(3):386-399. |
[3] |
Basrai MA, Hieter P, Boeke JD. Small open reading frames: beautiful needles in the haystack. Genome Res, 1997, 7(8):768-771.
pmid: 9267801 |
[4] |
Chen J, Brunner AD, Cogan JZ, Nuñez JK, Fields AP, Adamson B, Itzhak DN, Li JY, Mann M, Leonetti MD, Weissman JS. Pervasive functional translation of noncanonical human open reading frames. Science, 2020, 367(6482):1140-1146.
doi: 10.1126/science.aay0262 pmid: 32139545 |
[5] | Ma YL, Yue Y, Ma YB, Zhang Q, Zhou QT, Song YP, Shen YQ, Li X, Ma XC, Li C, Hanson MA, Han GW, Sickmier EA, Swaminath G, Zhao SW, Stevens RC, Hu LA, Zhong WG, Zhang MQ, Xu F. Structural basis for apelin control of the human apelin receptor. 《 Structure, 2017, 25(6): 858-866.e4. |
[6] |
Pauli A, Norris ML, Valen E, Chew GL, Gagnon JA, Zimmerman S, Mitchell A, Ma J, Dubrulle J, Reyon D, Tsai SQ, Joung JK, Saghatelian A, Schier AF. Toddler: an embryonic signal that promotes cell movement via apelin receptors. Science, 2014, 343(6172):1248636.
doi: 10.1126/science.1248636 |
[7] |
Freyer L, Hsu CW, Nowotschin S, Pauli A, Ishida J, Kuba K, Fukamizu A, Schier AF, Hoodless PA, Dickinson ME, Hadjantonakis AK. Loss of apela peptide in mice causes low penetrance embryonic lethality and defects in early mesodermal derivatives. Cell Rep, 2017, 20(9):2116-2130.
doi: S2211-1247(17)31106-3 pmid: 28854362 |
[8] |
Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan JX, Kim SJ, Mehta H, Hevener AL,de Cabo R,Cohen P. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab, 2015, 21(3):443-454.
doi: 10.1016/j.cmet.2015.02.009 |
[9] |
Sousa ME, Farkas MH. Micropeptide. PLoS Genet, 2018, 14(12):e1007764.
doi: 10.1371/journal.pgen.1007764 |
[10] |
Kondo T, Hashimoto Y, Kato K, Inagaki S, Hayashi S, Kageyama Y. Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA. Nat Cell Biol, 2007, 9(6):660-665.
doi: 10.1038/ncb1595 |
[11] |
He CT, Jia CX, Zhang Y, Xu P. Enrichment-based proteogenomics identifies microproteins, missing proteins, and novel smORFs in saccharomyces cerevisiae. J Proteome Res, 2018, 17(7):2335-2344.
doi: 10.1021/acs.jproteome.8b00032 |
[12] |
Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 2009, 324(5924):218-223.
doi: 10.1126/science.1168978 |
[13] |
Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AKA, Hamon C. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem, 2003, 75(8):1895-1904.
doi: 10.1021/ac0262560 pmid: 12713048 |
[14] |
Tinoco AD, Saghatelian A. Investigating endogenous peptides and peptidases using peptidomics. Biochemistry, 2011, 50(35):7447-7461.
doi: 10.1021/bi200417k |
[15] |
Cong L, Zhang F. Genome engineering using CRISPR- Cas9 system. Methods Mol Biol, 2015, 1239:197-217.
doi: 10.1007/978-1-4939-1862-1_10 pmid: 25408407 |
[16] |
Sberro H, Fremin BJ, Zlitni S, Edfors F, Greenfield N, Snyder MP, Pavlopoulos GA, Kyrpides NC, Bhatt AS. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell, 2019, 178(5): 1245-1259.e14.
doi: S0092-8674(19)30781-0 pmid: 31402174 |
[17] | Bazin J, Baerenfaller K, Gosai SJ, Gregory BD, Crespi M, Bailey-Serres J. Global analysis of ribosome- associated noncoding RNAs unveils new modes of translational regulation. Proc Natl Acad Sci USA, 2017, 114(46):E10018-E10027. |
[18] |
Couso JP, Patraquim P. Classification and function of small open reading frames. Nat Rev Mol Cell Biol, 2017, 18(9):575-589.
doi: 10.1038/nrm.2017.58 |
[19] |
Cai BL, Li ZH, Ma MT, Wang ZJ, Han PG, Abdalla BA, Nie QH, Zhang XQ. LncRNA-Six1 encodes a micropeptide to activate Six1 in cis and is involved in cell proliferation and muscle growth. Front Physiol, 2017, 8:230.
doi: 10.3389/fphys.2017.00230 |
[20] | Lauressergues D, Couzigou JM, Clemente HS, Martinez Y, Dunand C, Bécard G, Combier JP. Primary transcripts of microRNAs encode regulatory peptides. Nature, 2015, 520(7545):90-93. |
[21] |
Zhang ML, Zhao K, Xu XP, Yang YB, Yan S, Wei P, Liu H, Xu JB, Xiao FZ, Zhou HK, Yang XS, Huang NN, Liu JL, He KJ, Xie KP, Zhang G, Huang SY, Zhang N. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun, 2018, 9(1):4475.
doi: 10.1038/s41467-018-06862-2 |
[22] | Cobb LJ, Lee CH, Xiao JL, Yen K, Wong RG, Nakamura HK, Mehta HH, Gao QL, Ashur C, Huffman DM, Wan JX, Muzumdar R, Barzilai N, Cohen P. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging (Albany NY), 2016, 8(4):796-809. |
[23] |
Denli AM, Narvaiza I, Kerman BE, Pena M, Benner C, Marchetto MCN, Diedrich JK, Aslanian A, Ma J, Moresco JJ, Moore L, Hunter T, Saghatelian A, Gage FH. Primate-specific ORF0 contributes to retrotransposon- mediated diversity. Cell, 2015, 163(3):583-593.
doi: 10.1016/j.cell.2015.09.025 |
[24] |
Renz PF, Valdivia-Francia F, Sendoel A. Some like it translated: small ORFs in the 5'UTR. Exp cell Res, 2020, 396(1):112229.
doi: 10.1016/j.yexcr.2020.112229 |
[25] |
Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B, Fleming ES, Vejnar CE, Lee MT, Rajewsky N, Walther TC, Giraldez AJ. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J, 2014, 33(9):981-993.
doi: 10.1002/embj.201488411 pmid: 24705786 |
[26] |
Ma J, Diedrich JK, Jungreis I, Donaldson C, Vaughan J, Kellis M, Yates JR, Saghatelian A. Improved identification and analysis of small open reading frame encoded polypeptides. Anal Chem, 2016, 88(7):3967-3975.
doi: 10.1021/acs.analchem.6b00191 |
[27] |
Vanderperre B, Lucier JF, Bissonnette C, Motard J, Tremblay G, Vanderperre S, Wisztorski M, Salzet M, Boisvert FM, Roucou X. Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS One, 2013, 8(8):e70698.
doi: 10.1371/journal.pone.0070698 |
[28] |
van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, Adami E, Faber AB, Kirchner M, Maatz H, Blachut S, Sandmann CL, Kanda M, Worth CL, Schafer S, Calviello L, Merriott R, Patone G, Hummel O, Wyler E, Obermayer B, Mücke MB, Lindberg EL, Trnka F, Memczak S, Schilling M, Felkin LE, Barton PJR, Quaife NM, Vanezis K, Diecke S, Mukai M, Mah N, Oh SJ, Kurtz A, Schramm C, Schwinge D, Sebode M, Harakalova M, Asselbergs FW, Vink A, de Weger RA, Viswanathan S, Widjaja AA, Gärtner-Rommel A, Milting H, Remedios CD, Knosalla C, Mertins P, Landthaler M, Vingron M, Linke WA, Seidman JG, Seidman CE, Rajewsky N, Ohler U, Cook SA, Hubner N. The translational landscape of the human heart. Cell, 2019, 178(1): 242-260.e29.
doi: 10.1016/j.cell.2019.05.010 |
[29] |
Ma J, Ward CC, Jungreis I., Slavoff SA, Schwaid AG, Neveu J, Budnik BA, Kellis M, Saghatelian A. Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue. J Proteome Res, 2014, 13(3):1757-1765.
doi: 10.1021/pr401280w |
[30] |
Lu SH, Wang T, Zhang G, He QY. Understanding the proteome encoded by “non-coding RNAs”: new insights into human genome. Sci China Life Sci, 2020, 63(7):986-995.
doi: 10.1007/s11427-019-1677-8 |
[31] |
Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR,Kasaragod P,Shelton JM,Liou J,Bassel-Duby R,Olson EN. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell, 2015, 160(4):595-606.
doi: S0092-8674(15)00010-0 pmid: 25640239 |
[32] |
Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu FF, Reese AL, McAnally JR,Chen XW,Kavalali ET,Cannon SC,Houser SR,Bassel-Duby R,Olson EN. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351(6270):271-275.
doi: 10.1126/science.aad4076 |
[33] |
Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab, 2013, 24(5):222-228.
doi: 10.1016/j.tem.2013.01.005 |
[34] |
Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang HY, Hu M, Zhu HF, Yan GR. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell, 2017, 68(1): 171-184.e6.
doi: 10.1016/j.molcel.2017.09.015 |
[35] |
Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, Saghatelian A, Nakayama KI, Clohessy JG, Pandolfi PP. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 2017, 541(7636):228-232.
doi: 10.1038/nature21034 |
[36] |
Shen PS, Park J, Qin YD, Li XM, Parsawar K, Larson MH, Cox J, Cheng YF, Lambowitz AM, Weissman JS, Brandman O, Frost A. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science, 2015, 347(6217):75-78.
doi: 10.1126/science.1259724 |
[37] |
Walther DM, Rapaport D. Biogenesis of mitochondrial outer membrane proteins. Biochim Biophys Acta, 2009, 1793(1):42-51.
doi: 10.1016/j.bbamcr.2008.04.013 pmid: 18501716 |
[38] |
Dembowski M, Kunkele KP, Nargang FE, Neupert W, Rapaport D. Assembly of Tom6 and Tom7 into the TOM core complex of neurospora crassa. J Biol Chem, 2001, 276(21):17679-17685.
doi: 10.1074/jbc.M009653200 pmid: 11278536 |
[39] |
Magny EG, Pueyo JI, Pearl FMG, Cespedes MA, Niven JE, Bishop SA, Couso JP. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science, 2013, 341(6150):1116-1120.
doi: 10.1126/science.1238802 |
[40] |
Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu FF, Reese AL, McAnally JR,Chen XW,Kavalali ET,Cannon SC,Houser SR,Bassel-Duby R,Olson EN. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351(6270):271-275.
doi: 10.1126/science.aad4076 |
[41] |
Chu Q, Martinez TF, Novak SW, Donaldson CJ, Tan D, Vaughan JM, Chang TN, Diedrich JK, Andrade L, Kim A, Zhang T, Manor U, Saghatelian A. Regulation of the ER stress response by a mitochondrial microprotein. Nat Commun, 2019, 10(1):4883.
doi: 10.1038/s41467-019-12816-z |
[42] |
Stein CS, Jadiya P, Zhang XM, McLendon JM, Abouassaly GM, Witmer NH, Anderson EJ, Elrod JW, Boudreau RL. Mitoregulin: a lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency. Cell Rep, 2018, 23(13): 3710- 3720.e8.
doi: 10.1016/j.celrep.2018.06.002 |
[43] |
Wu SQ, Zhang LY, Deng JQ, Guo BB, Li F, Wang YR, Wu R, Zhang SH, Lu JC, Zhou YF. A novel micropeptide encoded by Y-linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma. Cancer Res, 2020, 80(13):2790-2803.
doi: 10.1158/0008-5472.CAN-19-3440 |
[44] |
Li MW, Li X, Zhang YN, Wu HM, Zhou HZ, Ding X, Zhang XM, Jin XR, Wang Y, Yin XQ, Li CC, Yang PW, Xu HM. Micropeptide MIAC inhibits HNSCC progression by interacting with aquaporin 2. J Am Chem Soc, 2020, 142(14):6708-6716.
doi: 10.1021/jacs.0c00706 |
[45] | Guo BB, Wu SQ, Zhu X, Zhang LY, Deng JQ, Li F, Wang YR, Zhang SH, Wu R, Lu JC, Zhou YF. Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple-negative breast cancer progression. EMBO J, 2020, 39(1):e102190. |
[46] |
Bhatta A, Atianand M, Jiang ZZ, Crabtree J, Blin J, Fitzgerald KA. A mitochondrial micropeptide is required for activation of the Nlrp3 inflammasome. J Immunol, 2020, 204(2):428-437.
doi: 10.4049/jimmunol.1900791 pmid: 31836654 |
[47] |
Zhang S, Reljić B, Liang C, Kerouanton B, Francisco JC, Peh JH, Mary C, Jagannathan NS, Olexiouk V, Tang C, Fidelito G, Nama S, Cheng RK, Wee CL, Wang LC, Roggli PD, Sampath P, Lane L, Petretto E, Sobota RM, Jesuthasan S, Tucker-Kellogg L, Reversade B, Menschaert G, Sun L, Stroud DA, Ho L. Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly. Nat Commun, 2020, 11(1):1312.
doi: 10.1038/s41467-020-14999-2 pmid: 32161263 |
[48] |
Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab, 2013, 24(5):222-228.
doi: 10.1016/j.tem.2013.01.005 |
[49] |
Nashine S, Cohen P, Nesburn AB, Kuppermann BD, Kenney MC. Characterizing the protective effects of SHLP2, a mitochondrial-derived peptide, in macular degeneration. Sci Rep, 2018, 8(1):15175.
doi: 10.1038/s41598-018-33290-5 pmid: 30310092 |
[50] |
Liu Y, Shi YF. Mitochondria as a target in cancer treatment. MedComm, 2020, 1(2):129-139.
doi: 10.1002/mco2.16 |
[51] | Chen XY, Li MW, Wang Y, Chen Q, Xu HM. Progress on sORF-encoded micropeptides. Hereditas(Beijing), 2021, 43(8):737-746. |
陈相颖, 李梦玮, 王颖, 陈权, 徐寒梅. 小开放阅读框编码微肽的研究进展. 遗传, 2021, 43(8):737-746. | |
[52] |
Pueyo JI, Magny EG, Sampson CJ, Amin U, Evans IR, Bishop SA, Couso JP. Hemotin, a regulator of phagocytosis encoded by a small ORF and conserved across metazoans. PLoS Biol, 2016, 14(3):e1002395.
doi: 10.1371/journal.pbio.1002395 |
[53] |
Guo B, Zhai DY, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature, 2003, 423(6938):456-461.
doi: 10.1038/nature01627 |
[54] |
Niu LM, Lou FZ, Sun Y, Sun LB, Cai XJ, Liu ZY, Zhou H, Wang H, Wang ZK, Bai J, Yin QQ, Zhang JX, Chen LJ, Peng DH, Xu ZY, Gao YY, Tang SB, Fan L, Wang HL. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci Adv, 2020, 6(21): eaaz2059.
doi: 10.1126/sciadv.aaz2059 |
[55] | Guo BB, Wu SQ, Zhu X, Zhang LY, Deng JQ, Li F, Wang YR, Zhang SH, Wu R, Lu JC, Zhou YF. Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple-negative breast cancer progression. EMBO J, 2020, 39(1):e102190. |
[56] |
Polycarpou-Schwarz M, Groß M, Mestdagh P, Schott J, Grund SE, Hildenbrand C, Rom J, Aulmann S, Sinn HP, Vandesompele J, Diederichs S. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene, 2018, 37(34):4750-4768.
doi: 10.1038/s41388-018-0281-5 pmid: 29765154 |
[57] |
Chng SC, Ho L, Tian J, Reversade B. ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev Cell, 2013, 27(6):672-680.
doi: 10.1016/j.devcel.2013.11.002 |
[58] |
Ho L, van Dijk M, Chye STJ, Messerschmidt DM, Chng SC, Ong S, Yi LK, Boussata S, Goh GHY, Afink GB, Lim CY, Dunn NR, Solter D, Knowles BB, Reversade B. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science, 2017, 357(6352):707-713.
doi: 10.1126/science.aam6607 |
[59] |
Makarewich CA, Baskin KK, Munir AZ, Bezprozvannaya S, Sharma G, Khemtong C, Shah AM, McAnally JR,Malloy CR,Szweda LI,Bassel-Duby R,Olson EN. MOXI is a mitochondrial micropeptide that enhances fatty acid β-oxidation. Cell Rep, 2018, 23(13):3701-3709.
doi: S2211-1247(18)30822-2 pmid: 29949755 |
[60] |
Bi PP, Mcanally JR, Shelton JM, Sánchez-Ortiz E, Bassel-Duby R, Olson EN. Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration. Proc Natl Acad Sci USA, 2018, 115(15):3864-3869.
doi: 10.1073/pnas.1800052115 |
[61] |
Diao MQ, Li C, Xu JD, Zhao XF, Wang JX. RPS27, a sORF-encoded polypeptide, functions antivirally by activating the NF-κB pathway and interacting with viral envelope proteins in shrimp. Front Immunol, 2019, 10:2763.
doi: 10.3389/fimmu.2019.02763 |
[62] |
Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell, 2011, 147(4):789-802.
doi: 10.1016/j.cell.2011.10.002 |
[63] |
Aspden JL, Eyre-Walker YC, Phillips RJ, Amin U, Mumtaz MAS, Brocard M, Couso JP. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. eLife, 2014, 3:e03528.
doi: 10.7554/eLife.03528 |
[64] |
Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A, Selbach M, Landthaler M, Obermayer B, Ohler U. Detecting actively translated open reading frames in ribosome profiling data. Nat Methods, 2016, 13(2):165-170.
doi: 10.1038/nmeth.3688 pmid: 26657557 |
[65] | Hao YJ, Zhang LL, Niu YW, Cai TX, Luo JJ, He SM, Zhang B, Zhang DJ, Qin Y, Yang FQ, Chen RS. SmProt: a database of small proteins encoded by annotated coding and non-coding RNA loci. Brief Bioinform, 2018, 19(4):636-643. |
[66] |
Olexiouk V, Van Criekinge W, Menschaert G. An update on sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res, 2018, 46(D1):D497-D502.
doi: 10.1093/nar/gkx1130 |
[67] |
Liu Q, Shvarts T, Sliz P, Gregory RI. RiboToolkit: an integrated platform for analysis and annotation of ribosome profiling data to decode mRNA translation at codon resolution. Nucleic Acids Res, 2020, 48(W1):W218-W229.
doi: 10.1093/nar/gkaa395 |
[68] |
Lin MF, Jungreis I, Kellis M. PhyloCSF: a comparative genomics method to distinguish protein coding and non- coding regions. Bioinformatics, 2011, 27(13):i275-i282.
doi: 10.1093/bioinformatics/btr209 |
[69] |
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou MM, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res, 2005, 15(8):1034-1050.
pmid: 16024819 |
[70] |
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol, 1990, 215(3):403-410.
doi: 10.1016/S0022-2836(05)80360-2 pmid: 2231712 |
[71] |
Eddy SR. Multiple alignment using hidden Markov models. Proc Int Conf Intell Syst Mol Biol, 1995, 3:114-120.
pmid: 7584426 |
[72] |
Zhu MM, Gribskov M. MiPepid: MicroPeptide identification tool using machine learning. BMC Bioinformatics, 2019, 20(1):559.
doi: 10.1186/s12859-019-3033-9 |
[73] |
Hanada K, Akiyama K, Sakurai T, Toyoda T, Shinozaki K, Shiu SH. sORF finder: a program package to identify small open reading frames with high coding potential. Bioinformatics, 2010, 26(3):399-400.
doi: 10.1093/bioinformatics/btp688 |
[74] |
Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ, Karger AD, Budnik BA, Rinn JL, Saghatelian A. Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol, 2013, 9(1):59-64.
doi: 10.1038/nchembio.1120 pmid: 23160002 |
[75] |
Leney AC, Heck AJR. Native mass spectrometry: what is in the name? J Am Soc Mass Spectrom, 2017, 28(1):5-13.
doi: 10.1007/s13361-016-1545-3 |
[76] |
Zhu YF, Orre LM, Johansson HJ, Huss M, Boekel J, Vesterlund M, Fernandez-Woodbridge A, Branca RMM, Lehtiö J. Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat Commun, 2018, 9(1):903.
doi: 10.1038/s41467-018-03311-y |
[77] |
Yin XQ, Jing YY, Xu HM. Mining for missed sORF-encoded peptides. Expert Rev Proteomics, 2019, 16(3):257-266.
doi: 10.1080/14789450.2019.1571919 |
[78] |
Martinez TF, Chu Q, Donaldson C, Tan D, Shokhirev MN, Saghatelian A. Accurate annotation of human protein-coding small open reading frames. Nat Chem Biol, 2020, 16(4):458-468.
doi: 10.1038/s41589-019-0425-0 pmid: 31819274 |
[79] |
Lu SH, Zhang J, Lian XL, Sun L, Meng K, Chen Y, Sun ZH, Yin XF, Li YX, Zhao J, Wang T, Zhang G, He QY. A hidden human proteome encoded by 'non-coding' genes. Nucleic Acids Res, 2019, 47(15):8111-8125.
doi: 10.1093/nar/gkz646 |
[80] |
Fälth M, Sköld K, Norrman M, Svensson M, Fenyö D, Andren PE. SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics, 2006, 5(6):998-1005.
doi: 10.1074/mcp.M500401-MCP200 |
[81] |
Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC. Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem, 2008, 80(8):2921-2931.
doi: 10.1021/ac702422x pmid: 18312001 |
[82] |
Skarshewski A, Stanton-Cook M, Huber T, Al Mansoori S, Smith R, Beatson SA, Rothnagel JA. uPEPperoni: an online tool for upstream open reading frame location and analysis of transcript conservation. BMC Bioinformatics, 2014, 15:36.
doi: 10.1186/1471-2105-15-36 pmid: 24484385 |
[83] |
Lin MF, Jungreis I, Kellis M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics, 2011, 27(13):i275-i282.
doi: 10.1093/bioinformatics/btr209 |
[84] |
Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 2013, 154(1):240-251.
doi: 10.1016/j.cell.2013.06.009 |
[85] |
Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJS, Jackson SE, Wills MR, Weissman JS. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep, 2014, 8(5):1365-1379.
doi: 10.1016/j.celrep.2014.07.045 |
[86] |
Fields AP, Rodriguez EH, Jovanovic M, Stern-Ginossar N, Haas BJ, Mertins P, Raychowdhury R, Hacohen N, Carr SA, Ingolia NT, Regev A, Weissman JS. A regression-based analysis of ribosome-profiling data reveals a conserved complexity to mammalian translation. Mol Cell, 2015, 60(5):816-827.
doi: 10.1016/j.molcel.2015.11.013 |
[87] |
Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A, Selbach M, Landthaler M, Obermayer B, Ohler U. Detecting actively translated open reading frames in ribosome profiling data. Nat Methods, 2016, 13(2):165-170.
doi: 10.1038/nmeth.3688 pmid: 26657557 |
[88] |
Chew GL, Pauli A, Rinn JL, Regev A, Schier AF, Valen E. Ribosome profiling reveals resemblance between long non-coding RNAs and 5' leaders of coding RNAs. Development, 2013, 140(13):2828-2834.
doi: 10.1242/dev.098343 |
[89] |
Raj A, Wang SH, Shim H, Harpak A, Li YI, Engelmann B, Stephens M, Gilad Y, Pritchard JK. Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling. eLife, 2016, 5:e13328.
doi: 10.7554/eLife.13328 |
[90] |
Chun SY, Rodriguez CM, Todd PK, Mills RE. SPECtre: a spectral coherence--based classifier of actively translated transcripts from ribosome profiling sequence data. BMC Bioinformatics, 2016, 17(1):482.
doi: 10.1186/s12859-016-1355-4 |
[91] |
Ji Z, Song RS, Regev A, Struhl K. Many lncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins. eLife, 2015, 4:e08890.
doi: 10.7554/eLife.08890 |
[92] | Malone B, Atanassov I, Aeschimann F, Li XP, Großhans H, Dieterich C. Bayesian prediction of RNA translation from ribosome profiling. Nucleic Acids Res, 2017, 45(6):2960-2972. |
[93] |
Xiao ZT, Huang RY, Xing XD, Chen YL, Deng HT, Yang XR. De novo annotation and characterization of the translatome with ribosome profiling data. Nucleic Acids Res, 2018, 46(10):e61.
doi: 10.1093/nar/gky179 |
[94] |
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou MM, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res, 2005, 15(8):1034-1050.
pmid: 16024819 |
[95] |
Frith MC, Forrest AR, Nourbakhsh E, Pang KC, Kai C, Kawai J, Carninci P, Hayashizaki Y, Bailey TL, Grimmond SM. The abundance of short proteins in the mammalian proteome. PLoS Genet, 2006, 2(4):e52.
doi: 10.1371/journal.pgen.0020052 |
[96] |
Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei LP, Gao G. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res, 2007, 35:W345-W349.
doi: 10.1093/nar/gkm391 pmid: 17631615 |
[97] |
Ruiz-Orera J, Albà MM. Translation of small open reading frames: roles in regulation and evolutionary innovation. Trends Genet, 2019, 35(3):186-198.
doi: S0168-9525(18)30222-1 pmid: 30606460 |
[98] |
Makarewich CA, Olson EN. Mining for micropeptides. Trends Cell Biol, 2017, 27(9):685-696.
doi: S0962-8924(17)30064-8 pmid: 28528987 |
[99] |
Chu Q, Rathore A, Diedrich JK, Donaldson CJ, Yates JR, Saghatelian A. Identification of microprotein-protein interactions via APEX tagging. Biochemistry, 2017, 56(26):3299-3306.
doi: 10.1021/acs.biochem.7b00265 |
[100] | Wang YR, Wu SQ, Zhu X, Zhang LY, Deng JQ, Li F, Guo BB, Zhang SH, Wu R, Zhang Z, Wang KX, Lu JC, Zhou YF. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J Exp Med, 2020, 217(3): jem.20190950. |
[101] |
Makarewich CA, Munir AZ, Schiattarella GG, Bezprozvannaya S, Raguimova ON, Cho EE, Vidal AH, Robia SL, Bassel-Duby R, Olson EN. The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. eLife, 2018, 7:e38319.
doi: 10.7554/eLife.38319 |
[1] | 熊婉迪, 徐开宇, 陆林, 李家立. 长链非编码RNA在阿尔茨海默病中的研究进展[J]. 遗传, 2022, 44(3): 189-197. |
[2] | 程敏, 张静, 曹鹏博, 周钢桥. 缺氧相关长链非编码RNA作为肝癌预后预测标志物的潜在价值[J]. 遗传, 2022, 44(2): 153-167. |
[3] | 陈相颖, 李梦玮, 王颖, 陈权, 徐寒梅. 小开放阅读框编码微肽的研究进展[J]. 遗传, 2021, 43(8): 737-746. |
[4] | 马剑峰, 甘麦邻, 朱砺, 沈林園. 转运RNA衍生的小RNA功能及其研究方法[J]. 遗传, 2021, 43(12): 1107-1120. |
[5] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[6] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[7] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[8] | 李恩惠,赵欣,张策,刘威. 脆性X智力低下蛋白参与非编码RNA通路的研究进展[J]. 遗传, 2018, 40(2): 87-94. |
[9] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[10] | 路畅, 黄银花. 动物长链非编码RNA研究进展[J]. 遗传, 2017, 39(11): 1054-1065. |
[11] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[12] | 李静秋, 杨杰, 周平, 乐燕萍, 龚朝辉. 竞争性内源RNA的生物学功能及其调控[J]. 遗传, 2015, 37(8): 756-764. |
[13] | 黄小庆,李丹丹,吴娟. 植物长链非编码RNA研究进展[J]. 遗传, 2015, 37(4): 344-359. |
[14] | 杨峰, 易凡, 曹慧青, 梁子才, 杜权. 长链非编码RNA研究进展[J]. 遗传, 2014, 36(5): 456-468. |
[15] | 李灵, 宋旭. 长链非编码RNA在生物体中的调控作用[J]. 遗传, 2014, 36(3): 228-236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: