[1] I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M. The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol , 2011, 62: 335-364. [2] M, Cashmore AR. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature , 1993, 366(6451): 162-166. [3] T, Ryo H, Yamamoto K, Toh H, Inui T, Ayaki H, Nomura T, Ikenaga M. Similarity among the Drosophila (6-4) photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science , 1996, 272(5258): 109-112. [4] H, Yuan Q, Briscoe AD, Froy O, Casselman A, Reppert SM. The two CRYs of the butterfly. Curr Biol , 2005, 15(23): R953-R954. [5] Q, Metterville D, Briscoe AD, Reppert SM. Insect cry-ptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol , 2007, 24(4): 948-955. [6] DS, Zhao X, Zhao S, Kazantsev A, Wang RP, Todo T, Wei YF, Sancar A. Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry , 1996, 35(44): 13871-13877. [7] K, Kanno SI, Smit B, van der Horst GTJ, Takao M, Yasui A. Characterization of photolyase/blue-light receptor homologs in mouse and human cells. Nucleic Acids Res , 1998, 26(22): 5086-5092. [8] T, Kubo Y, Okano K, Okano T. Identification and characterization of cryptochrome4 in the ovary of western clawed frog Xenopus tropicalis. Zoolog Sci , 2014, 31(3): 152-159. [9] R, Yamaguchi C, Zemba W, Kubo Y, Okano K, Okano T. Light-dependent structural change of chicken retinal Cryptochrome4. J Biol Chem , 2012, 287(51): 42634-42641. [10] Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, Yuba S, Iwai S, Todo T. Molecular analysis of zebrafish photol-yase/cryptochrome family: two types of cryptochromes present in zebrafish. Genes Cells , 2000, 5(9): 725-738. [11] P, Stanewsky R, Helfrich-Förster C, Emery-Le M, Hall JC, Rosbash M. Drosophila CRY is a deep brain circadian photoreceptor. Neuron , 2000, 26(2): 493-504. [12] T, Todo T, Wülbeck C, Stanewsky R, Helfrich-Förster C. Cryptochrome is present in the compound eyes and a subset of Drosophila's clock neurons. J Comp Neurol , 2008, 508(6): 952-966. [13] CL, Bowes Rickman C, Shaw SJ, Ebright JN, Kelly U, Sancar A, Rickman DW. Expression of the blue-light receptor cryptochrome in the human retina. Invest Ophthalmol Vis Sci , 2003, 44(10): 4515-4521. [14] BD, Vaidya AT, Top D, Widom J, Young MW, Crane BR. Structure of full-length Drosophila cryptochrome. Nature , 2011, 480(7377): 396-399. [15] C, Zoltowski BD, Jones AR, Vaidya AT, Top D, Widom J, Young MW, Scrutton NS, Crane BR, Leys D. Updated structure of Drosophila cryptochrome. Nature , 2013, 495(7441): E3-E4. [16] A, Berndt A, Singh HR, Grudziecki A, Ladurner AG, Timinszky G, Kramer A, Wolf E. Structures of Droso-phila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell , 2013, 153(6): 1394-1405. [17] N, Selby CP, Zhong D, Sancar A. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore. J Biol Chem , 2014, 289(8): 4634-4642. [18] R. Clock mechanisms in Drosophila. Cell Tissue Res , 2002, 309(1): 11-26. [19] R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC. The cryb mutation iden-tifies cryptochrome as a circadian photoreceptor in Droso-phila. Cell , 1998, 95(5): 681-692. [20] der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature , 1999, 398(6728): 627-630. [21] RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science , 2003, 299(5604): 245-247. [22] H, Miyake S, Sumi Y, Yamaguchi S, Yasui A, Muijtjens M, Hoeijmakers JHJ, van der Horst GTJ. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science , 1999, 286(5449): 2531-2534. [23] LA, Burris TP. Action of RORs and their ligands in(patho)physiology. Trends Endocrinol Metab , 2012, 23(12): 619-627. [24] LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM. Interacting molecular loops in the mam-malian circadian clock. Science , 2000, 288(5468): 1013-1019. [25] John PC, Hirota T, Kay SA, Doyle FJ 3rd. Spatiotemporal separation of PER and CRY posttranslational regulation in the mammalian circadian clock. Proc Natl Acad Sci USA , 2014, 111(5): 2040-2045. [26] K, Muneoka T, Tsuboi T, Nakayama KI. Sub-strate binding promotes formation of the Skp1-Cul1-Fbxl3 (SCF Fbxl3 ) protein complex. J Biol Chem , 2013, 288(45): 32766-32776. [27] A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H, Nakagawa T, Lanjakornsiripan D, Nakayama KI, Fukada Y. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell , 2013, 152(5): 1106-1118. [28] Y, Sakai M, Kurabayashi N, Hirota T, Fukada Y. Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J Biol Chem , 2005, 280(36): 31714-31721. [29] N, Hirota T, Sakai M, Sanada K, Fukada Y. DYRK1A and glycogen synthase kinase 3β, a dual-kinase mechanism directing proteasomal degradation of CRY2 for cir-cadian timekeeping. Mol Cell Biol , 2010, 30(7): 1757-1768. [30] T, Lee JW, St John PC, Sawa M, Iwaisako K, Noguchi T, Pongsawakul PY, Sonntag T, Welsh DK, Brenner DA, Doyle FJ 3rd, Schultz PG, Kay SA. Identification of small molecule activators of cryptochrome. Science , 2012, 337(6098): 1094-1097. [31] KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW, Downes M, Evans RM. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature , 2011, 480(7378): 552-556. [32] R, Hatori M, Nayak SK, Liu F, Panda S, Verma IM. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci USA , 2012, 109(31): 12662-12667. [33] RJ, Casselman A, Waddell S, Reppert SM. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature , 2008, 454(7207): 1014-1018. [34] TP. Evidence for celestial and magnetic compass orien-tation in Lake Migrating Sockeye Salmon Fry. J Comp Physiol , 1980, 137(3): 243-248. [35] WT. Magnets Interfere with Pigeon Homing. Proc Natl Acad Sci USA , 1971, 68(1): 102-106. [36] R, Edgar NM, Sloan KA, Phillips JB. Mag-netic compass orientation in C57BL/6J mice. Learn Behav , 2006, 34(4): 366-373. [37] S, Červeny J, Neef J, Vojtěch O, Burda H. Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci USA , 2008, 105(36): 13451-13455. [38] RJ, Foley LE, Casselman A, Reppert SM. Ani-mal cryptochromes mediate magnetoreception by an uncon-ventional photochemical mechanism. Nature , 2010, 463(7282): 804-807. [39] LE, Gegear RJ, Reppert SM. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun , 2011, 2: 356. [40] SH, Ozturk N, Denaro TR, Arat NO, Kao YT, Zhu H, Zhong D, Reppert SM, Sancar A. Formation and function of flavin anion radical in cryptochrome 1 blue-light photore-ceptor of monarch butterfly. J Biol Chem , 2007, 282(24): 17608-17612. [41] S, Sancar A. Analysis of autophosphorylating kinase activities of Arabidopsis and human cryptochromes. Bioche-mistry , 2006, 45(44): 13369-13374. [42] CA, Hore PJ, Wallace MI. A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception. Trends Biochem Sci , 2013, 38(9): 435-446. [43] R, Stapput K, Bischof HJ, Wiltschko W. Light- dependent magnetoreception in birds: increasing inten-sity of monochromatic light changes the nature of the response. Front Zool , 2007, 4: 5. [44] H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R. Cryptochromes and neuronal- activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci USA , 2004, 101(39): 14294-14299. [45] C, Denzau S, Stapput K, Ahmad M, Peichl L, Wiltschko W, Wiltschko R. Magnetoreception: activated cry-ptochrome 1a concurs with magnetic orientation in birds. J R Soc Interface , 2013, 10(88): 20130638. [46] S, Lohmann KJ. The physics and neurobiology of magnetoreception. Nat Rev Neurosci , 2005, 6(9): 703-712. [47] 史远. 鸟类磁感受的生物物理机制研究进展. 生物物理学报, 2009, 25(4): 247-254. [48] P, Ritz T, Stapput K, Wiltschko R, Wiltschko W. Magnetic compass orientation of migratory birds in the presence of a 1. 315 MHz oscillating field. Naturwissen-schaften , 2005, 92(2): 86-90. [49] G, Rossi A, Leonardi E, Mason M, Bertolucci C, Caccin L, Spolaore B, Martin AJM, Schlichting M, Grebler R, Helfrich-Forster C, Mammi S, Costa R, Tosatto SCE. Fly cryptochrome and the visual system. Proc Natl Acad Sci USA , 2013, 110(15): 6163-6168. [50] KJ, Parson KG, Dahm NA, Holmes TC. CRYPTO-CHROME is a blue-light sensor that regulates neuronal firing rate. Science , 2011, 331(6023): 1409-1413. [51] CT, Hore PJ. Chemical magnetoreception in birds: the radical pair mechanism. Proc Natl Acad Sci USA , 2009, 106(2): 353-360. [52] IA, Schulten K. Magnetoreception through cry-ptochrome may involve superoxide. Biophys J , 2009, 96(12): 4804-4813. [53] P, Ahmad M. Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair con-sistent with magnetoreception. J Biol Chem , 2011, 286(24): 21033-21040. [55] (责任编委: 吴 强) |