[1] Lee RC, Feinbaum RL, Ambros V. The C. elegans hetero-chronic gene lin-4 encodes small RNAs with an-tisense complementarity to lin-14. Cell, 1993, 75(5): 843-854.[2] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.[3] Cui XS, Shen XH, Kim NH. Dicer1 expression in preimplantation mouse embryos: Involvement of Oct3/4 transcription at the blastocyst stage. Biochem Biophys Res Commun, 2007, 352(1): 231-236.[4] Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ. Dicer is essential for mouse development. Nat Genet, 2003, 35(3): 215-217.[5] Tay Y, Zhang JQ, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 2008, 455(7216): 1124-1128.[6] Chen CF, Ridzon D, Lee CT, Blake J, Sun YM, Strauss WM. Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm Genome, 2007, 18(5): 316-327.[7] Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific microRNAs. Dev Cell, 2003, 5(2): 351-358.[8] Houbaviy HB, Dennis L, Jaenisch R, Sharp PA. Characterization of a highly variable eutherian microRNA gene. RNA, 2005, 11(8): 1245-1257.[9] Sengupta S, Nie J, Wagner RJ, Yang CH, Stewart R, Thomson JA. MicroRNA 92b controls the G1/S check-point gene p57 in human embryonic stem cells. Stem Cells, 2009, 27(7): 1524-1528.[10] Card DAG, Hebbar PB, Li LP, Trotter KW, Komatsu Y, Mishina Y, Archer TK. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol, 2008, 28(20): 6426-6438.[11] Ambros V, Chen XM. The regulation of genes and genomes by small RNAs. Development, 2007, 134(9): 1635-1641.[12] Benetti R, Gonzalo S, Jaco I, Muñoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen TP, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco MA. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol, 2008, 15(9): 268-279.[13] Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Fili-powicz W. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol, 2008, 15(3): 259-267.[14] Xu N, Papagiannakopoulos T, Pan GJ, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 2009, 137(4): 647-658.[15] Wang YL, Keys DN, Au-Young JK, Chen CF. MicroRNAs in embryonic stem cells. J Cell Physiol, 2009, 218(2): 251-255.[16] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5): 861-872.[17] Yu JY, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian Sl, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917-1920.[18] Okita K, Ichisaka T, Yamanaka S. Generation of germ-line-competent induced pluripotent stem cells. Nature, 2007, 448(7151): 313-317.[19] Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science, 2008, 322(5903): 945-949.[20] Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 2008, 322(5903): 949-953.[21] Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009, 4(6): 472-476.[22] Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yama-naka S. Promotion of direct reprogramming by transfor-mation-deficient Myc. Proc Natl Acad Sci USA, 2010, 107(32): 14152-14157.[23] Yamanaka S. Elite and stochastic models for induced pluripotent stem cell generation. Nature, 2009, 460(7251): 49-52.[24] Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS. Human embryonic stem cells express a unique set of microRNAs. Dev Biol, 2004, 270(2): 488-498.[25] Zovoilis A, Nolte J, Drusenheimer N, Zechner U, Hada H, Guan K, Hasenfuss G, Nayernia K, Engel W. Multipotent adult germline stem cells and embryonic stem cells have similar microRNA profiles. Mol Hum Reprod, 2008, 14(9): 521-529.[26] Rosa A, Spagnoli FM, Brivanlou AH. The miR-430/427/ 302 family controls mesendodermal fate specification via species-specific target selection. Dev Cell, 2009, 16(4): 517-527.[27] Liu HY, Deng S, Zhao ZH, Zhang HY, Xiao JX, Song W, Gao F, Guan YM. Oct4 regulates the miR-302 cluster in P19 mouse embryonic carcinoma cells. Mol Biol Rep, 2011, 38(3): 2155-2160.[28] Liao BJ, Bao XC, Liu LQ, Feng SP, Zovoilis A, Liu WB, Xue YT, Cai J, Guo XP, Qin BM, Zhang RS, Wu JY, Lai LX, Teng MK, Niu LW, Zhang BL, Esteban MA, Pei DQ. MicroRNA cluster 302-367 enhances somatic cell repro-gramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem, 2011, 286(19): 17359-17364.[29] Lin SL, Chang DC, Lin CH, Ying SY, Leu D, Wu DTS. Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucl Acids Res, 2011, 39(3): 1054-1065.[30] Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang YZ, Yang WL, Gruber PJ, Epstein JA, Morrisey EE. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 2011, 8(4): 376-388.[31] Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M. Reprogram-ming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 2011, 8(6): 633-638.[32] Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, Blelloch R. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibro-blasts to induced pluripotent stem cells. Nat Biotechnol, 2011, 29(5): 443-448.[33] Korpal M, Lee ES, Hu GH, Kang YB. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem, 2008, 283(22): 14910-14914.[34] Li RH, Liang JL, Ni S, Zhou T, Qing XB, Li HP, He WZ, Chen JK, Li F, Zhuang Q, Qin BM, Xu Jy, Li W, Yang Jy, Gan Y, Qin DJ, Feng SP, Song H, Yang DS, Zhang BL, Zeng LW, Lai LX, Esteban MA, Pei DQ. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 2010, 7(1): 51-63.[35] He L, He XY, Lim LP, de Stanchina E, Xuan ZY, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen CF, Lowe SW, Cleary MA, Hannon GJ. A microRNA component of the p53 tumour suppressor network. Nature, 2007, 447(7148): 1130-1134.[36] Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S. Suppression of in-duced pluripotent stem cell generation by the p53-p21 pathway. Nature, 2009, 460(7259): 1132-1135.[37] Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisúa Belmonte JC. Linking the p53 tumour suppressor pathway to somatic cell repro-gramming. Nature, 2009, 460(7259): 1140-1144.[38] Choi YJ, Lin CP, Ho JJ, He XY, Okada N, Bu PC, Zhong YC, Kim SY, Bennett MJ, Chen CF, Ozturk A, Hicks GG, Hannon GJ, He L. MiR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol, 2011, 13(11): 1353-1360.[39] Medeiros LA, Dennis LM, Gill ME, Houbaviy H, Mark-oulaki S, Fu DD, White AC, Kirak O, Sharp PA, Page DC, Jaenisch R. Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc Natl Acad Sci USA, 2011, 108(34): 14163-14168.[40] Wang YM, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet, 2008, 40(12): 1478-1483.[41] Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripo-tency. Nat Biotechnol, 2009, 27(5): 459-461. |