[1] Collins AJ, Foley RN, Herzog C, Chavers B, Gilbertson D, Ishani A, Kasiske B, Liu J, Mau LW, McBean M, Murray A, St Peter W, Guo H, Gustafson S, Li Q, Li S, Peng Y, Qiu Y, Roberts T, Skeans M, Snyder J, Solid C, Wang C, Weinhandl E, Zaun D, Arko C, Chen SC, Dalleska F, Daniels F, Dunning S, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L. Us renal data system 2010 annual data report. Am J Kidney Dis, 2011, 57(S1): A8, e1-526.[2] Kanwar YS, Sun L, Xie P, Liu FY, Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol, 2011, 6(1): 395-423.[3] Quinn M, Angelico MC, Warram JH, Krolewski AS. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia, 1996, 39(8): 940-945.[4] Harjutsalo V, Katoh S, Sarti C, Tajima N, Tuomilehto J. Population-based assessment of familial clustering of diabetic nephropathy in type 1 diabetes. Diabetes, 2004, 53(9): 2449-2454.[5] Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC. Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) dia-betes mellitus. Diabetologia, 1990, 33(7): 438-443.[6] Mooyaart AL, Valk EJ, van Es LA, Bruijn JA, de Heer E, Freedman BI, Dekkers OM, Baelde HJ. Genetic associations in diabetic nephropathy: A meta-analysis. Diabe-tologia, 2011, 54(3): 544-553.[7] Wang FR, Fang QQ, Yu NL, Zhao DY, Zhang YM, Wang J, Wang Q, Zhou XF, Cao XJ, Fan XY. Association between genetic polymorphism of the angiotensin-converting en-zyme and diabetic nephropathy: A meta-analysis comprising 26, 580 subjects. J Renin Angiotensin Aldosterone Syst, 2012, 13(1): 161-174.[8] Wang Y, Ng MCY, So WY, Tong PCY, Ma RCW, Chow CC, Cockram CS, Chan JCN. Prognostic effect of inser-tion/deletion polymorphism of the ace gene on renal and cardiovascular clinical outcomes in chinese patients with type 2 diabetes. Diabetes Care, 2005, 28(2): 348-354.[9] So WY, Ma RC, Ozaki R, Tong PC, Ng MC, Ho CS, Lam CW, Chow CC, Chan WB, Kong AP, Chan JC. Angio-tensin-converting enzyme (ace) inhibition in type 2, dia-betic patients--interaction with ace insertion/deletion polymorphism. Kidney Int, 2006, 69(8): 1438-1443.[10] 马青云. 糖尿病肾病遗传学研究现状. 中华糖尿病杂志, 2012, 4(1): 7-8.[11] Freedman BI, Bowden DW, Rich SS, Xu J, Wagenknecht LE, Ziegler J, Hicks PJ, Langefeld CD. Genome-wide linkage scans for renal function and albuminuria in type 2 diabetes mellitus: The diabetes heart study. Diabet Med, 2008, 25(3): 268-276.[12] Osterholm AM, He B, Pitkaniemi J, Albinsson L, Berg T, Sarti C, Tuomilehto J, Tryggvason K. Genome-wide scan for type 1 diabetic nephropathy in the finnish population reveals suggestive linkage to a single locus on chromo-some 3q. Kidney Int, 2007, 71(2): 140-145.[13] Placha G, Poznik GD, Dunn J, Smiles A, Krolewski B, Glew T, Puppala S, Schneider J, Rogus JJ, Rich SS, Duggirala R, Warram JH, Krolewski AS. A genome-wide linkage scan for genes controlling variation in renal function estimated by serum cystatin c levels in extended families with type 2 diabetes. Diabetes, 2006, 55(12): 3358-3365.[14] Schelling JR, Abboud HE, Nicholas SB, Pahl MV, Sedor JR, Adler SG, Arar NH, Bowden DW, Elston RC, Freed-man BI, Goddard KA, Guo X, Hanson RL, Ipp E, Iyengar SK, Jun G, Kao WH, Kasinath BS, Kimmel PL, Klag MJ, Knowler WC, Nelson RG, Parekh RS, Quade SR, Rich SS, Saad MF, Scavini M, Smith MW, Taylor K, Winkler CA, Zager PG, Shah VO. Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations: The family investigation of nephropathy and diabetes (find). Diabetes, 2008, 57(1): 235-243.[15] Wessman M, Forsblom C, Kaunisto MA, Söderlund J, Ilonen J, Sallinen R, Hiekkalinna T, Parkkonen M, Max-well AP, Tarnow L, Parving HH, Hadjadj S, Marre M, Peltonen L, Groop PH. Novel susceptibility locus at 22q11 for diabetic nephropathy in type 1 diabetes. PLoS One, 2011, 6(9): e24053.[16] Gaffen SL. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep, 2009, 11(5): 365-370.[17] Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, García-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol, 2011, 7(6): 327-340.[18] Palmieri F. The mitochondrial transporter family (slc25): Physiological and pathological implications. Pflugers Arch, 2004, 447(5): 689-709.[19] Tanaka N, Babazono T, Saito S, Sekine A, Tsunoda T, Haneda M, Tanaka Y, Fujioka T, Kaku K, Kawamori R, Kikkawa R, Iwamoto Y, Nakamura Y, Maeda S. Association of solute carrier family 12 (sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single nucleotide polymorphisms. Diabetes, 2003, 52(11): 2848-2853.[20] Kim JH, Shin HD, Park BL, Moon MK, Cho YM, Hwang YH, Oh KW, Kim SY, Lee HK, Ahn C, Park KS. SLC12A3 (solute carrier family 12 member[so-dium/chloride] 3) polymorphisms are associated with end-stage renal disease in diabetic nephropathy. Dia-betes, 2006, 55(3): 843-848.[21] Akkina S, Becker BN. Micrornas in kidney function and disease. Transl Res, 2011, 157(4): 236-240.[22] Igo RP Jr, Iyengar SK, Nicholas SB, Goddard KAB, Langefeld CD, Hanson RL, Duggirala R, Divers J, Abboud H, Adler SG, Arar NH, Horvath A, Elston RC, Bowden DW, Guo XQ, Ipp E, Kao WH, Kimmel PL, Knowler WC, Meoni LA, Molineros J, Nelson RG, Pahl MV, Parekh RS, Rasooly RS, Schelling JR, Shah VO, Smith MW, Winkler CA, Zager PG, Sedor JR, Freedman BI. Genomewide linkage scan for diabetic renal failure and albuminuria: The find study. Am J Nephrol, 2011, 33(5): 381- 389.[23] Shimazaki A, Kawamura Y, Kanazawa A, Sekine A, Saito S, Tsunoda T, Koya D, Babazono T, Tanaka Y, Matsuda M, Kawai K, Iiizumi T, Imanishi M, Shinosaki T, Yanagimoto T, Ikeda M, Omachi S, Kashiwagi A, Kaku K, Iwamoto Y, Kawamori R, Kikkawa R, Nakajima M, Nakamura Y, Maeda S. Genetic variations in the gene encoding elmo1 are associated with susceptibility to diabetic nephropathy. Diabetes, 2005, 54(4): 1171-1178.[24] Gumienny TL, Brugnera E, Tosello-Trampont AC, Kin-chen JM, Haney LB, Nishiwaki K, Walk SF, Nemergut ME, Macara IG, Francis R, Schedl T, Qin Y, Van Aelst L, Hen-gartner MO, Ravichandran KS. Ced-12/elmo, a novel member of the crkii/dock180/rac pathway, is required for phagocytosis and cell migration. Cell, 2001, 107(1): 27-41.[25] Hanson RL, Craig DW, Millis MP, Yeatts KA, Kobes S, Pearson JV, Lee AM, Knowler WC, Nelson RG, Wolford JK. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes, 2007, 56(4): 975-983.[26] Graham M, Adams JM. Chromosome 8 breakpoint far 3' of the c-MYC oncogene in a burkitt's lymphoma 2;8 variant translocation is equivalent to the murine PVT-1 locus. EMBO J, 1986, 5(11): 2845-2851.[27] Shtivelman E, Bishop JM. The PVT gene frequently amplifies with MYC in tumor cells. Mol Cell Biol, 1989, 9(3): 1148-1154.[28] McDonough CW, Palmer ND, Hicks PJ, Roh BH, An SS, Cooke JN, Hester JM, Wing MR, Bostrom MA, Rudock ME, Lewis JP, Talbert ME, Blevins RA, Lu LY, Ng MCY, Sale MM, Divers J, Langefeld CD, Freedman BI, Bowden DW. A genome-wide association study for diabetic neph-ropathy genes in African Americans. Kidney Int, 2011, 79(5): 563-572.[29] Takahashi H, Koshimizu U, Miyazaki JI, Nakamura T. Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIM-Kinase 2 gene. Dev Biol, 2002, 241(2): 259-272.[30] Mueller PW, Rogus JJ, Cleary PA, Zhao Y, Smiles AM, Steffes MW, Bucksa J, Gibson TB, Cordovado SK, Krolewski AS, Nierras CR, Warram JH. Genetics of kid-neys in diabetes (GokinD) study: A genetics collection available for identifying genetic susceptibility factors for diabetic nephropathy in type 1 diabetes. J Am Soc Nephrol, 2006, 17(7): 1782-1790.[31] Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, Ng DPK, Placha G, Canani LH, Bochenski J, Waggott D, Merchant ML, Krolewski B, Mirea L, Wanic K, Katavetin P, Kure M, Wolkow P, Dunn JS, Smiles A, Walker WH, Boright AP, Bull SB, Doria A, Rogus JJ, Rich SS, Warram JH, Krolewski AS. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes, 2009, 58(6): 1403-1410.[32] Maeda S, Araki S, Babazono T, Toyoda M, Umezono T, Kawai K, Imanishi M, Uzu T, Watada H, Suzuki D, Kashiwagi A, Iwamoto Y, Kaku K, Kawamori R, Nakamura Y. Replication study for the association between four loci identified by a genome-wide association study on Euro-pean American subjects with type 1 diabetes and suscepti-bility to diabetic nephropathy in Japanese subjects with type 2 diabetes. Diabetes, 2010, 59(8): 2075-2079.[33] Fagerholm E, Ahlqvist E, Forsblom C, Sandholm N, Syreeni A, Parkkonen M, McKnight AJ, Tarnow L, Max-well AP, Parving HH, Groop L, Groop PH. SNP in the genome-wide association study hotspot on chromosome 9p21 confers susceptibility to diabetic nephropathy in type 1 diabetes. Diabetologia, 2012, 55(9): 2386-2393.[34] Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jack-son AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu TL, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Sara-mies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 2007, 316(5829): 1341-1345.[35] Williams WW, Salem RM, McKnight AJ, Sandholm N, Forsblom C, Taylor A, Guiducci C, McAteer JB, McKay GJ, Isakova T, Brennan EP, Sadlier DM, Palmer C, Söderlund J, Fagerholm E, Harjutsalo V, Lithovius R, Gordin D, Hietala K, Kytö J, Parkkonen M, Rosengård-Bärlund M, Thorn L, Syreeni A, Tolonen N, Saraheimo M, Wadén J, Pitkäniemi J, Sarti C, Tuomilehto J, Tryggvason K, Österholm AM, He B, Bain S, Martin F, Godson C, Hirschhorn JN, Maxwell AP, Groop PH, Florez JC. Asso-ciation testing of previously reported variants in a large case-control meta-analysis of diabetic nephropathy. Diabetes, 2012, 61(8): 2187-2194.[36] Cui WP, Du B, Zhou WH, Jia Y, Sun GD, Sun J, Zhang DM, Yuan H, Xu F, Lu XL, Luo P, Miao LN. Relationship between five glut1 gene single nucleotide polymorphisms and diabetic nephropathy: A systematic review and meta-analysis. Mol Biol Rep, 2012, 39(8): 8551-8558.[37] Lim XL, Nurbaya S, Salim A, Tai ES, Maeda S, Nakamura Y, Ng DPK. KCNQ1 SNPS and susceptibility to diabetic nephropathy in East Asians with type 2 diabetes. Diabetologia, 2012, 55(9): 2402-2406.[38] De Cosmo S, Prudente S, Lamacchia O, Lapice E, Morini E, Di Paola R, Copetti M, Ruggenenti P, Remuzzi G, Vaccaro O, Cignarelli M, Trischitta V. PPARγ2 P12A polymorphism and albuminuria in patients with type 2 diabetes: A meta-analysis of case-control studies. Nephrol Dial Transplant, 2012, 26(12): 4011-4016.[39] Zhang H, Zhu SM, Chen J, Tang Y, Hu HL, Mohan V, Venkatesan R, Wang JM, Chen HP. Peroxisome prolif-erator-activated receptor γ polymorphism Pro12Ala is associated with nephropathy in type 2 diabetes: Evidence from meta-analysis of 18 studies. Diabetes Care, 2012, 35(6): 1388-1393.[40] Yu RC, Bo H, Huang SM. Association between the PPARG gene polymorphism and the risk of diabetic nephropathy: A meta-analysis. Genet Test Mol Biomarkers, 2012, 16(5): 429- 434.[41] Kang PP, Tian CW, Jia CQ. Association of RAGE gene polymorphisms with type 2 diabetes mellitus, diabetic retinopathy and diabetic nephropathy. Gene, 2012, 500(1): 1-9.[42] Yu ZY, Chen LS, Zhang LC, Zhou TB. Meta-analysis of the relationship between ACE I/D gene polymorphism and end-stage renal disease in patients with diabetic neph-ropathy. Nephrology (Carlton), 2012, 17(5): 480-487.[43] Niu WQ, Qi Y. An updated meta-analysis of methylene-tetrahydrofolate reductase gene 677C/T polymorphism with diabetic nephropathy and diabetic retinopathy. Diabetes Res Clin Pract, 2012, 95(1): 110-118.[44] Hu C, Zhang R, Yu W, Wang J, Wang C, Pang C, Ma X, Bao Y, Xiang K, Jia W. CPVL/CHN2 genetic variant is associated with diabetic retinopathy in Chinese type 2 diabetic patients. Diabetes, 2012, 60(11): 3085-3089.[45] Syreeni A, El-Osta A, Forsblom C, Sandholm N, Parkkonen M, Tarnow L, Parving HH, McKnight AJ, Maxwell AP, Cooper ME, Groop PH. Genetic examination of SETD 7 and SUV 39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes. Diabetes, 2012, 60(11): 3073-3080.[46] Jia H, Yu L, Gao B, Ji Q. Association between the T869C polymorphism of transforming growth factor-beta 1 and diabetic nephropathy: A meta-analysis. Endocrine, 2012, 40(3): 372-378.[47] Ding W, Wang FR, Fang QQ, Zhang MM, Chen J, Gu Y. Association between two genetic polymorphisms of the renin-angiotensin-aldosterone system and diabetic neph-ropathy: A meta- analysis. Mol Biol Rep, 2012, 39(2): 1293-1303.[48] Li Y, Tang K, Zhang Z, Zhang M, Zeng Z, He Z, He L, Wan C. Genetic diversity of the apolipoprotein E gene and diabetic nephropathy: A meta-analysis. Mol Biol Rep, 2012, 38(5): 3243-3252.[49] He Y, Fan Z, Zhang J, Zhang Q, Zheng M, Li Y, Zhang D, Gu S, Yang H. Polymorphisms of eNOS gene are associated with diabetic nephropathy: A meta-analysis. Mutagenesis, 2012, 26(2): 339-349.[50] Gu HF, Brismar K. Genetic association studies in diabetic nephropathy. Curr Diabetes Rev, 2012, 8(5): 336-344.[51] Stein LD. An introduction to the informatics of "Next-generation" Sequencing. Curr Protoc Bioinformatics, 2011, Chapter 11, Unit 11. 1. |