遗传 ›› 2021, Vol. 43 ›› Issue (2): 118-133.doi: 10.16288/j.yczz.20-390
收稿日期:
2020-11-18
出版日期:
2021-02-16
发布日期:
2021-01-29
基金资助:
Yuxing Zhang1(), Hong Wu1(), Li Yu1()
Received:
2020-11-18
Online:
2021-02-16
Published:
2021-01-29
Supported by:
摘要:
哺乳动物类群呈现出的丰富毛色是引人注目的一种生物现象,是研究和理解哺乳动物适应性进化的理想模型之一。哺乳动物的毛色多态在躲避天敌、捕食、求偶及抵御紫外线等方面都具有重要作用。哺乳动物毛发的色素化过程由体内黑色素的数量、质量和分布状况所决定。黑色素的形成过程复杂,包括黑素细胞的分化、成熟,黑素体等细胞器的形态发生及黑色素在黑素细胞中的合成代谢和转运等过程;而在细胞色素化的每个阶段/时相都伴随着一些重要功能基因的参与,并通过基因之间的相互作用形成了黑色素生物代谢的复杂调控网络,进而形成不同的毛色有助于哺乳动物适应不同生存环境。对哺乳动物不同毛色形成机制的探究一直以来都是遗传学及进化生物学的重要研究领域和聚焦热点。本文综述了哺乳动物毛色色素化过程的主要分子机制以及毛色适应性进化的遗传基础,以期为哺乳动物毛色多态及其适应性进化的分子机制研究提供参考。
章誉兴, 吴宏, 于黎. 哺乳动物毛色调控机制及其适应性进化研究进展[J]. 遗传, 2021, 43(2): 118-133.
Yuxing Zhang, Hong Wu, Li Yu.
表1
毛色表型与适应性进化遗传基础研究总结"
适应性状 | 物种 | 表型特征 | 基因 | 参考文献 | |
---|---|---|---|---|---|
躲避天敌 | 雪鞋兔(Lepus americanus) | 棕色 | ASIP | [ | |
北极狐(Alopex lagopus) | 白色 | MC1R | [ | ||
非洲条纹鼠(Rhabdomys pumilio) | 深浅交替分布的条纹 | Alx3 | [ | ||
岩小囊鼠(Chaetodipus intermedius) | 深色毛发 | MC1R | [ | ||
捕食 | 白灵熊(Ursus americanus kermodei) | 白色 | MC1R | [ | |
非洲猎犬(Lycaon pictus) | 黑色、白色、黄色 | MYO5A、HPS6、PAH | [ | ||
猫科动物(Felidae) | 黑、黄斑纹 | Taqpep、EDN3 | [ | ||
紫外辐射 | 猪(Sus scrofa domesticus) | 藏猪 | 黑色 | MC1R | [ |
山羊(Capra aegagrus hircus) | 西藏绒山羊 | 黑色 | KITLG | [ | |
人工选择 | 猪(Sus scrofa domesticus) | 通城猪 | 两头乌 | MITF、EDNRB | [ |
滇南小耳猪 | 六白 | EDNRB、CNTLN、PINK1 | [ | ||
水牛(Bubalus bubalis) | 白色 | ASIP | [ | ||
白色斑点 | MITF | [ | |||
家犬(Canis lupus familiaris) | 白色、浅黄色、紫貂色 | ASIP | [ | ||
棕色 | TYRP1 | [ | |||
黑色 | CBD103 | [ | |||
毛色稀释 | MLPH | [ | |||
斑点 | SILV、MITF | [ | |||
黄色 | MC1R | [ | |||
家马(Equus ferus caballus) | 黑色、栗色、骝毛 | MC1R、ASIP | [ | ||
奶酪色、珍珠色、 白斑 | SLC45A2、PMEL、 KIT、EDNRB、MITF | [ | |||
家兔(Oryctolagus cuniculus f.domesticus) | 灰色 | TYR | [ | ||
獭兔(Oryctolagus cuniculus) | 白色、黑色、棕色、 灰色、灰黄色 | KIT | [ | ||
绵羊(Ovis aries) | 黑色、白色 | TYR、TYRP1 | [ | ||
山羊(Capra aegagrus hircus) | 南江黄羊 | 黄色/黄褐色, 背脊有黑色条带 | RALY、EIF2S2 | [ | |
美姑山羊 | 黑色 | IRF4、EXOC2 | [ | ||
美洲驼(Lama glama) | 白色斑点 | MITF | [ | ||
阿拉伯骆驼(Camelus dromedarius) | 白斑 | KIT | [ | ||
羊驼(Vicugna pacos) | 棕色 | miR-211、miR-184、miR-486、 miR-885、 miR-451、miR-451 | [ | ||
白色 | miR-202、miR-542-5p、miR-424、miR-370、miR-22-3p、miR-143-5p、miR-101a-3p、miR-144a-3p、miR-380-3p | [ | |||
蓝狐(Alopex lagopus) | 白色 | KIT | [ | ||
驴(Equus asinus) | 黑色、栗色 | TBX3 | [ |
[1] |
Xu X, Dong GX, Schmidt-Küntzel A, Zhang XL, Zhuang Y, Fang R, Sun X, Hu XS, Zhang TY, Yang HD, Zhang DL, Marker L, Jiang ZF, Li RQ, Luo SJ. The genetics of tiger pelage color variations. Cell Res , 2017, 27(7): 954-957.
doi: 10.1038/cr.2017.32 pmid: 28281538 |
[2] | Li JF. Classification of the coat color of domestic animals of the genus Equus. J Zhengzhou Coll Animal Husbandry Eng , 1985, (1): 44-47. |
李积福. 马属家畜的毛色分类. 郑州牧业工程高等专科学校学报, 1985, (1): 44-47. | |
[3] | Yan ZQ. The coat color inheritance of Labrador retrievers. Anim Husb Veter Med , 2003, 35(5): 23-24. |
颜泽清. 拉布拉多犬的毛色遗传. 畜牧与兽医, 2003, 35(5): 23-24. | |
[4] | Xun XG, Ding XL, Ma DJ, Sun L. German shepherd dog’s coat patterns, colors, lengths and types. J Anim Sci Veter Med , 2014, 33(3): 33-43. |
寻欣国, 丁晓鳞, 马大君, 孙磊. 德国牧羊犬的被毛模式,颜色,长度和类型. 畜牧兽医杂志, 2014, 33(3): 33-43. | |
[5] | Geissmann T, Lwin N, Aung SS, Aung TN, Aung ZM, Hla TH, Grindley M, Momberg F. A new species of snub-nosed monkey, genus Rhinopithecus Milne-Edwards, 1872(Primates, Colobinae ), from northern Kachin state, northeastern Myanmar. Am J Primatol, 2011, 73(1): 96-107. |
[6] |
Kaelin CB, Xu X, Hong LZ, David VA, McGowan KA, Schmidt-Küntzel A, Roelke ME, Pino J, Pontius J, Cooper GM, Manuel H, Swanson WF, Marker L, Harper CK, Van Dyk A, Yue B, Mullikin JC, Warren WC, Eizirik E, Kos L, O'Brien SJ, Barsh GS, Menotti- Raymond M. Specifying and sustaining pigmentation patterns in domestic and wild cats. Science , 2012, 337(6101): 1536-1541.
pmid: 22997338 |
[7] | Protas ME, Patel NH. Evolution of coloration patterns. Annu Rev Cell Dev Biol , 2008, 24: 425-446. |
[8] | Hoekstra HE, Drumm KE, Nachman MW. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution , 2004, 58(6): 1329-1341. |
[9] | Liu ZJ, Zhang LY, Yan ZZ, Ren ZJ, Han FM, Tan XX, Xiang ZY, Dong F, Yang ZM, Liu GJ, Wang ZM, Zhang JL, Que TC, Tang CH, Li YF, Wang S, Wu JY, Li LG, Huang CM, Roos C, Li M. Genomic mechanisms of physiological and morphological adaptations of limestone langurs to karst habitats. Mol Biol Evol , 2020, 37(4): 952-968. |
[10] | Caro T, Walker H, Rossman Z, Hendrix M, Stankowich T. Why is the giant panda black and white? Behav Ecol , 2017, 28(3): 657-667. |
[11] |
Fennell JG, Talas L, Baddeley RJ, Cuthill IC, Scott- Samuel NE. Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system. J R Soc Interface , 2019, 16(154): 20190183.
pmid: 31138092 |
[12] | Caro T, Beeman K, Stankowich T, Whitehead H. The functional significance of colouration in cetaceans. Evol Ecol , 2011, 25(6): 1231. |
[13] |
Wellenreuther M, Svensson EI, Hansson B. Sexual selection and genetic colour polymorphisms in animals. Mol Ecol , 2014, 23(22): 5398-5414.
doi: 10.1111/mec.12935 pmid: 25251393 |
[14] | West PM, Packer C. Sexual selection, temperature, and the lion's mane. Science , 2002, 297(5585): 1339-1343. |
[15] | Cooper VJ, Hosey GR. Sexual dichromatism and female preference in Eulemur fulvus subspecies. Int J Primatol , 2003, 24(6): 1177-1188. |
[16] |
Li MZ, Tian SL, Jin L, Zhou GY, Li Y, Zhang Y, Wang T, Yeung CKL, Chen L, Ma JD, Zhang JB, Jiang A, Li J, Zhou CW, Zhang J, Liu YK, Sun XQ, Zhao HW, Niu ZX, Lou P, Xian LJ, Shen XY, Liu SQ, Zhang SH, Zhang MW, Zhu L, Shuai SR, Bai L, Tang GQ, Liu HF, Jiang YZ, Mai MM, Xiao J, Wang X, Zhou Q, Wang ZQ, Stothard P, Xue M, Gao XL, Luo ZG, Gu YR, Zhu HM, Hu XX, Zhao YF, Plastow GS, Wang JY, Jiang Z, Li K, Li N, Li XW, Li RQ. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet , 2013, 45(12): 1431-1438.
pmid: 24162736 |
[17] | Yang Z. Introduce the classification of donkey fur color. Chin J Vet Med , 1963, (4): 27. |
杨再. 介绍驴的毛色分类. 中国兽医杂志, 1963, (4): 27. | |
[18] | Zhang J, Chen W, Wang H, Ceng YQ. Advances in studies on the genetic mechanism of pigmentation. Swine Ind Sci , 2013, 30(1): 100-103. |
张建, 陈伟, 王慧, 曾勇庆. 猪毛色遗传机制的研究进展. 猪业科学, 2013, 30(1): 100-103. | |
[19] | Sun XY, Fu L, Chen CC, Ren HX. Physiological activity of natural polysaccharides and its application in poultry. Heilongjiang Anim Sci Veter Med , 2019, (9): 41-44. |
孙晓燕, 付琳, 陈灿灿, 任航行. 绵羊毛色相关基因MC1R和ASIP的研究进展. 黑龙江畜牧兽医, 2019, (9): 41-44. | |
[20] | Yang GL. Study on the regulation mechanism of fur color formation in animals. Heilongjiang Anim Sci Veter Med , 2014, (5): 45-48. |
杨广礼. 动物毛色形成的调控机制研究. 黑龙江畜牧兽医, 2014, (5): 45-48. | |
[21] | Wu XQ, Liu CD, Du JJ, Luo J, Zhu L, Zhang SH. Research progress of the role of microRNA in the regulation of animal coat and skin color. Acta Vet Et Zootech Sin , 2016, 47(6): 1086-1092. |
巫小倩, 刘辰东, 堵晶晶, 罗嘉, 朱砺, 张顺华. microRNA调控动物毛色和肤色的研究进展. 畜牧兽医学报, 2016, 47(6): 1086-1092. | |
[22] | Wang L, Liu J. Research progress on molecular mechanism in the formation of melanin. J Xinjiang Univ(Nat Sci Ed) , 2019, 36(4): 468-474. |
王磊, 刘军. 黑色素形成分子机制研究进展. 新疆大学学报(自然科学版), 2019, 36(4): 468-474. | |
[23] |
Bonaventure J, Domingues MJ, Larue L. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res , 2013, 26(3): 316-325.
pmid: 23433358 |
[24] |
Lamoreux ML, Wakamatsu K, Ito S. Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Res , 2001, 14(1): 23-31.
doi: 10.1034/j.1600-0749.2001.140105.x pmid: 11277491 |
[25] | Vandamme N, Berx G. From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cell Mol Life Sci , 2019, 76(10): 1919-1934. |
[26] | WU DBL, Wu TC, Li YR, Li C, Wu JH, Hu SL, Liu B, Gao SX. Research progress on molecular basis and applicability of coat color formation in livestock. Chin Anim Husb Vet Med , 2019, 46(9): 2665-2675. |
勿都巴拉, 吴铁成, 李玉荣, 丽春, 吴江鸿, 胡斯乐, 刘斌, 高树新. 家畜毛色形成分子基础及应用研究进展. 中国畜牧兽医, 2019, 46(9): 2665-2675. | |
[27] |
Cieslak M, Reissmann M, Hofreiter M, Ludwig A. Colours of domestication. Biol Rev Camb Philos Soc , 2011, 86(4): 885-899.
pmid: 21443614 |
[28] | D’Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling Pathways in Melanogenesis. Int J Mol Sci , 2016, 17(7): 1144. |
[29] | Mohlin S, Kunttas E, Persson CU, Abdel-Haq R, Castillo A, Murko C, Bronner ME, Kerosuo L. Maintaining multipotent trunk neural crest stem cells as self-renewing crestospheres. Dev Biol , 2019, 447(2): 137-146. |
[30] |
Slominski A. Wortsman J, Plonka PM, Schallreuter KU, Paus R, Tobin DJ. Hair follicle pigmentation. J Invest Dermatol , 2005, 124(1): 13-21.
doi: 10.1111/j.0022-202X.2004.23528.x pmid: 15654948 |
[31] |
Larue L, de Vuyst F, Delmas V. Modeling melanoblast development. Cell Mol Life Sci , 2013, 70(6): 1067-1079.
doi: 10.1007/s00018-012-1112-4 pmid: 22915137 |
[32] | Costin GE, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. Faseb J , 2007, 21(4): 976-994. |
[33] |
Pillaiyar T, Manickam M, Jung SH. Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal , 2017, 40: 99-115.
pmid: 28911859 |
[34] | Maloy S, Hughes K. Brenner's Encyclopedia of Genetics (Second Edition). San Diego: Academic Press, 2013: 58-60. |
[35] | Seiberg M. Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Res , 2001, 14(4): 236-242. |
[36] | Coudrier E. Myosins in melanocytes: to move or not to move? Pigment Cell Res , 2007, 20(3): 153-160. |
[37] | Caro T, Mallarino R. Coloration in Mammals. Trends Ecol Evol , 2020, 35(4): 357-366. |
[38] |
Bellei B, Pitisci A, Catricalà C, Larue L, Picardo M. Wnt/β-catenin signaling is stimulated by α-melanocyte- stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation. Pigment Cell Melanoma Res , 2011, 24(2): 309-325.
pmid: 21040502 |
[39] |
Hwang I, Park JH, Park HS, Choi KA, Seol KC, Oh SI, Kang S, Hong S. Neural stem cells inhibit melanin production by activation of Wnt inhibitors. J Dermatol Sci , 2013, 72(3): 274-283.
doi: 10.1016/j.jdermsci.2013.08.006 pmid: 24016750 |
[40] | Tsang TF, Chan B, Tai WCS, Huang GX, Wang JR, Li XA, Jiang ZH, Hsiao WLW. Gynostemma pentaphyllum saponins induce melanogenesis and activate cAMP/PKA and Wnt/β-catenin signaling pathways. Phytomedicine , 2019, 60: 153008. |
[41] | Lim XH, Nusse R. Wnt signaling in skin development, homeostasis, and disease. Cold Spring Harb Perspect Biol , 2013, 5(2): a008029. |
[42] | Guo HY, Yang K, Deng F, Ye JX, Xing YZ, Li YH, Lian XH, Yang T. Wnt3a promotes melanin synthesis of mouse hair follicle melanocytes. Biochem Biophys Res Commun , 2012, 420(4): 799-804. |
[43] |
Dupin E, Le Douarin NM. Development of melanocyte precursors from the vertebrate neural crest. Oncogene , 2003, 22(20): 3016-3023.
pmid: 12789276 |
[44] | Aoki H, Motohashi T, Yoshimura N, Yamazaki H, Yamane T, Panthier JJ, Kunisada T. Cooperative and indispensable roles of endothelin 3 and KIT signalings in melanocyte development. Dev Dyn , 2005, 233(2): 407-417. |
[45] |
Shibahara S, Takeda K, Yasumoto K, Udono T, Watanabe K, Saito H, Takahashi K. Microphthalmia- associated transcription factor (MITF): multiplicity in structure, function, and regulation. J Investig Dermatol Symp Proc , 2001, 6(1): 99-104.
doi: 10.1046/j.0022-202x.2001.00010.x pmid: 11764295 |
[46] | Jiang S, Yu XJ, Dong CS. MiR-137 affects melanin synthesis in mouse melanocyte by repressing the expression of c-Kit and Tyrp2 in SCF/c-Kit signaling pathway. Biosci Biotechnol Biochem , 2016, 80(11): 2115-2121. |
[47] |
Hou L, Panthier JJ, Arnheiter H. Signaling and transcriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF. Development , 2000, 127(24): 5379-5389.
pmid: 11076759 |
[48] |
Kawakami A, Fisher DE. The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab Invest , 2017, 97(6): 649-656.
pmid: 28263292 |
[49] | Goding CR, Arnheiter H. MITF-the first 25 years. Genes Dev , 2019,33( 15-16): 983-1007. |
[50] | Wan P, Hu YQ, He L. Regulation of melanocyte pivotal transcription factor MITF by some other transcription factors. Mol Cell Biochem , 2011, 354( 1-2): 241-246. |
[51] |
Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med , 2006, 12(9): 406-414.
doi: 10.1016/j.molmed.2006.07.008 pmid: 16899407 |
[52] | Bissig C, Rochin L, van Niel G. PMEL Amyloid Fibril Formation: The Bright Steps of Pigmentation. Int J Mol Sci , 2016, 17(9): 1438. |
[53] |
Ishishita S, Takahashi M, Yamaguchi K, Kinoshita K, Nakano M, Nunome M, Kitahara S, Tatsumoto S, Go Y, Shigenobu S, Matsuda Y. Nonsense mutation in PMEL is associated with yellowish plumage colour phenotype in Japanese quail. Sci Rep , 2018, 8(1): 16732.
pmid: 30425278 |
[54] |
Sun LJ, Hu L, Zhang P, Li HJ, Sun JY, Wang HF, Xie X, Hu J. Silencing of PMEL attenuates melanization via activating lysosomes and degradation of tyrosinase by lysosomes. Biochem Biophys Res Commun , 2018, 503(4): 2536-2542.
doi: 10.1016/j.bbrc.2018.07.012 pmid: 30208522 |
[55] |
D'Alba L, Shawkey MD. Melanosomes: biogenesis, properties, and evolution of an ancient organelle. Physiol Rev , 2019, 99(1): 1-19.
doi: 10.1152/physrev.00059.2017 pmid: 30255724 |
[56] |
Valencia JC, Watabe H, Chi A, Rouzaud F, Chen KG, Vieira WD, Takahashi K, Yamaguchi Y, Berens W, Nagashima K, Shabanowitz J, Hunt DF, Appella E, Hearing VJ. Sorting of Pmel17 to melanosomes through the plasma membrane by AP1 and AP2: evidence for the polarized nature of melanocytes. J Cell Sci , 2006, 119(Pt 6): 1080-1091.
doi: 10.1242/jcs.02804 pmid: 16492709 |
[57] |
Hellström AR, Watt B, Fard SS, Tenza D, Mannström P, Narfström K, Ekesten B, Ito S, Wakamatsu K, Larsson J, Ulfendahl M, Kullander K, Raposo G, Kerje S, Hallböök F, Marks MS, Andersson L. Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation. PLoS Genet , 2011, 7(9): e1002285.
doi: 10.1371/journal.pgen.1002285 pmid: 21949658 |
[58] |
Hoashi T, Watabe H, Muller J, Yamaguchi Y, Vieira WD, Hearing VJ. MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes. J Biol Chem , 2005, 280(14): 14006-14016.
doi: 10.1074/jbc.M413692200 pmid: 15695812 |
[59] | Aydin IT, Hummler E, Smit NPM, Beermann F. Coat color dilution in mice because of inactivation of the melanoma antigen MART-1. Pigment Cell Melanoma Res , 2012, 25(1): 37-46. |
[60] |
Zhang P, Liu W, Zhu CS, Yuan XY, Li DG, Gu WJ, Ma HM, Xie X, Gao TW. Silencing of GPNMB by siRNA inhibits the formation of melanosomes in melanocytes in a MITF-independent fashion. PLoS One , 2012, 7(8): e42955.
doi: 10.1371/journal.pone.0042955 pmid: 22912767 |
[61] | Dennis MK, Mantegazza AR, Snir OL, Tenza D, Acosta-Ruiz A, Delevoye C, Zorger R, Sitaram A, de Jesus-Rojas W, Ravichandran K, Rux J, Sviderskaya EV, Bennett DC, Raposo G, Marks MS, Setty SRG. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. J Cell Biol , 2015, 209(4): 563-577. |
[62] |
Mahanty S, Ravichandran K, Chitirala P, Prabha J, Jani RA, Setty SRG. Rab9A is required for delivery of cargo from recycling endosomes to melanosomes. Pigment Cell Melanoma Res , 2016, 29(1): 43-59.
doi: 10.1111/pcmr.12434 pmid: 26527546 |
[63] |
Ancans J, Tobin DJ, Hoogduijn MJ, Smit NP, Wakamatsu K, Thody AJ. Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Exp Cell Res , 2001, 268(1): 26-35.
doi: 10.1006/excr.2001.5251 pmid: 11461115 |
[64] |
Ginger RS, Askew SE, Ogborne RM, Wilson S, Ferdinando D, Dadd T, Smith AM, Kazi S, Szerencsei RT, Winkfein RJ, Schnetkamp PPM, Green MR. SLC24A5 encodes a trans-Golgi network protein with potassium-dependent sodium-calcium exchange activity that regulates human epidermal melanogenesis. J Biol Chem , 2008, 283(9): 5486-5495.
doi: 10.1074/jbc.M707521200 pmid: 18166528 |
[65] |
Herraiz C, Garcia-Borron JC, Jimenez-Cervantes C, Olivares C. MC1R signaling. Intracellular partners and pathophysiological implications. Biochim Biophys Acta Mol Basis Dis , 2017, 1863 (10 Pt A): 2448-2461.
doi: 10.1016/j.bbadis.2017.02.027 pmid: 28259754 |
[66] |
D'Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci , 2013, 14(6): 12222-12248.
doi: 10.3390/ijms140612222 pmid: 23749111 |
[67] |
Haitina T, Ringholm A, Kelly J, Mundy NI, Schiöth HB. High diversity in functional properties of melanocortin 1 receptor (MC1R) in divergent primate species is more strongly associated with phylogeny than coat color. Mol Biol Evol , 2007, 24(9): 2001-2008.
doi: 10.1093/molbev/msm134 pmid: 17609536 |
[68] |
Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int J Cosmet Sci , 2018, 40(4): 328-347.
doi: 10.1111/ics.12466 pmid: 29752874 |
[69] | Boissy RE. Melanosome transfer to and translocation in the keratinocyte. Exp Dermatol , 2003, 12(Suppl. 2): 5-12. |
[70] |
Wu XF, Hammer JA. Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol , 2014, 29: 1-7.
doi: 10.1016/j.ceb.2014.02.003 |
[71] | Matesic LE, Yip R, Reuss AE, Swing DA, O'Sullivan TN, Fletcher CF, Copeland NG, Jenkins NA. Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc Natl Acad Sci USA , 2001, 98(18): 10238-10243. |
[72] |
Yoshida-Amano Y, Hachiya A, Ohuchi A, Kobinger GP, Kitahara T, Takema Y, Fukuda M. Essential role of RAB27A in determining constitutive human skin color. PLoS One , 2012, 7(7): e41160.
doi: 10.1371/journal.pone.0041160 pmid: 22844437 |
[73] |
Yamaguchi YJ, Hearing VJ. Physiological factors that regulate skin pigmentation. Biofactors , 2009, 35(2): 193-199.
doi: 10.1002/biof.29 pmid: 19449448 |
[74] |
Tadokoro R, Takahashi Y. Intercellular transfer of organelles during body pigmentation. Curr Opin Genet Dev , 2017, 45: 132-138.
doi: 10.1016/j.gde.2017.05.001 pmid: 28605672 |
[75] | Ge GH, Ta Y, Yang Q, Yang DH, Pu HZ, Zhang SH, Zhu L. Research progress of microRNA regulating hair follicle growth and development and hair color in animals. Acta Ecol Anim Domas , 2017, 38(9): 1-6. |
葛桂华, 谭娅, 杨琼, 杨大洪, 蒲红州, 张顺华, 朱砺. MicroRNA调控动物毛囊生长发育及毛色的研究进展. 家畜生态学报, 2017, 38(9): 1-6. | |
[76] |
Mills LS, Bragina EV, Kumar AV, Zimova M, Lafferty DJR, Feltner J, Davis BM, Hackländer K, Alves PC, Good JM, Melo-Ferreira J, Dietz A, Abramov AV, Lopatina N, Fay K. Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science , 2018, 359(6379): 1033-1036.
doi: 10.1126/science.aan8097 pmid: 29449510 |
[77] |
Jones MR, Mills LS, Alves PC, Callahan CM, Alves JM, Lafferty DJR, Jiggins FM, Jensen JD, Melo-Ferreira J, Good JM. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science , 2018, 360(6395): 1355-1358.
doi: 10.1126/science.aar5273 pmid: 29930138 |
[78] |
Våge DI, Fuglei E, Snipstad K, Beheim J, Landsem VM, Klungland H. Two cysteine substitutions in the MC1R generate the blue variant of the Arctic fox ( Alopex lagopus ) and prevent expression of the white winter coat . Peptides , 2005, 26(10): 1814-1817.
doi: 10.1016/j.peptides.2004.11.040 pmid: 15982782 |
[79] |
Mallarino R, Pillay N, Hoekstra HE, Schradin C. African striped mice. Curr Biol , 2018, 28(7): R299- R301.
doi: 10.1016/j.cub.2018.02.009 pmid: 29614283 |
[80] |
Mallarino R, Henegar C, Mirasierra M, Manceau M, Schradin C, Vallejo M, Beronja S, Barsh GS, Hoekstra HE. Developmental mechanisms of stripe patterns in rodents. Nature , 2016, 539(7630): 518-523.
doi: 10.1038/nature20109 pmid: 27806375 |
[81] | Nachman MW, Hoekstra HE, D'Agostino SL. The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci USA , 2003, 100(9): 5268-5273. |
[82] |
Ritland K, Newton C, Marshall HD. Inheritance and population structure of the white-phased "Kermode" black bear. Curr Biol , 2001, 11(18): 1468-1472. We report that a single nucleotide replacement in the melanocortin 1 receptor gene (mc1r) is responsible for the white coat color of the "Kermode" bear, a color phase of the black bear (Ursus americanus Pallus) found in the rainforests along the north coast of British Columbia. In a sample of 220 bears, of which 22 were white, there was complete association of a recessive Tyr-to-Cys replacement at codon 298 with the white phase. This variant has not been yet been reported in other mammals, and it also is the lightest-colored variant yet found at mc1r. Also, we found that heterozygotes, which act as a hidden reservoir for the allele among black bears, were infrequent outside of the three islands where Kermodes are common and that, within these three islands, heterozygotes were less frequent than expected under random mating. Immigration of black bears into Kermode populations can depress the occurrence of the white phase, and management practices should be designed to avoid facilitating higher immigration rates.
doi: 10.1016/S0960-9822(01)00448-1 |
[83] | Klinka DR, Reimchen TE. Adaptive coat colour polymorphism in the Kermode bear of coastal British Columbia. Biol J Linn Soc 2009, 98(3): 479-488. |
[84] | Chavez DE, Gronau I, Hains T, Kliver S, Koepfli KP, Wayne RK. Comparative genomics provides new insights into the remarkable adaptations of the African wild dog ( Lycaon pictus ). Sci Rep , 2019, 9(1): 8329. |
[85] |
Allen WL, Cuthill IC, Scott-Samuel NE, Baddeley R. Why the leopard got its spots: relating pattern development to ecology in felids. Proc Biol Sci , 2011, 278( 1710): 1373-1380.
doi: 10.1098/rspb.2010.1734 pmid: 20961899 |
[86] |
Kaelin CB, Xu X, Hong LZ, David VA, McGowan KA, Schmidt-Küntzel A, Roelke ME, Pino J, Pontius J, Cooper GM, Manuel H, Swanson WF, Marker L, Harper CK, Van Dyk A, Yue BS, Mullikin JC, Warren WC, Eizirik E, Kos L, O'Brien SJ, Barsh GS, Menotti- Raymond M. Specifying and sustaining pigmentation patterns in domestic and wild cats. Science , 2012, 337(6101): 1536-1541.
doi: 10.1126/science.1220893 pmid: 22997338 |
[87] | Del Bino S, Bernerd F. Variations in skin colour and the biological consequences of ultraviolet radiation exposure. Br J Dermatol , 2013, 169(Suppl. 3) : 33-40. |
[88] |
Miyamura Y, Coelho SG, Wolber R, Miller SA, Wakamatsu K, Zmudzka BZ, Ito S, Smuda C, Passeron T, Choi W, Batzer J, Yamaguchi Y, Beer JZ, Hearing VJ. Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Res , 2007, 20(1): 2-13.
doi: 10.1111/j.1600-0749.2006.00358.x pmid: 17250543 |
[89] |
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules , 2015, 5(2): 545-589.
doi: 10.3390/biom5020545 pmid: 25906193 |
[90] |
Visscher MO. Skin Color and Pigmentation in Ethnic Skin. Facial Plast Surg Clin North Am , 2017, 25(1): 119-125.
doi: 10.1016/j.fsc.2016.08.011 pmid: 27888889 |
[91] |
Guo JZ, Tao HX, Li PF, Li L, Zhong T, Wang LJ, Ma JY, Chen XY, Song TZ, Zhang HP. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds. Sci Rep , 2018, 8(1): 10405.
doi: 10.1038/s41598-018-28719-w pmid: 29991772 |
[92] |
Hayssen V. Effects of the nonagouti coat-color allele on behavior of deer mice (Peromyscus maniculatus): a comparison with Norway rats (Rattus norvegicus). J Comp Psychol , 1997, 111(4): 419-423.
doi: 10.1037/0735-7036.111.4.419 pmid: 9419886 |
[93] |
Ohta H, Tohda A, Nishimune Y. Proliferation and differentiation of spermatogonial stem cells in the W/W V mutant mouse testis . Biol Reprod , 2003, 69(6): 1815-1821.
doi: 10.1095/biolreprod.103.019323 pmid: 12890724 |
[94] |
Wolff GL. Body composition and coat color correlation in different phenotypes of “viable yellow” mice. Science , 1965, 147(3662): 1145-1147.
doi: 10.1126/science.147.3662.1145 pmid: 14242032 |
[95] | Li J, Yang H, Li JR, Li HP, Ning T, Pan XR, Shi P, Zhang YP. Artificial selection of the melanocortin receptor 1 gene in Chinese domestic pigs during domestication. Heredity(Edinb) , 2010, 105(3): 274-281. |
[96] |
Wang C, Wang HY, Zhang Y, Tang ZL, Li K, Liu B. Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs. Mol Ecol Resour , 2015, 15(2): 414-424.
doi: 10.1111/1755-0998.12311 pmid: 25132237 |
[97] |
Lü MD, Han XM, Ma YF, Irwin DM, Gao Y, Deng JK, Adeola AC, Xie HB, Zhang YP. Genetic variations associated with six-white-point coat pigmentation in Diannan small-ear pigs. Sci Rep , 2016, 6: 27534.
doi: 10.1038/srep27534 pmid: 27270507 |
[98] |
Liang D, Zhao PJ, Si JF, Fang LZ, Pairo-Castineira E, Hu XX, Xu Q, Hou YL, Gong Y, Liang ZW, Tian B, Mao HM, Yindee M, Faruque MO, Kongvongxay S, Khamphoumee S, Liu GE, Wu DD, Barker JSF, Han JL, Zhang Y. Genomic analysis revealed a convergent evolution of LINE-1 in coat color A case study in water buffaloes(Bubalus bubalis). Mol Biol Evol , 2020,msaa279.
doi: 10.1093/molbev/msaa279 pmid: 33212507 |
[99] |
Yusnizar Y, Wilbe M, Herlino AO, Sumantri C, Noor RR, Boediono A, Andersson L, Andersson G. Microphthalmia- associated transcription factor mutations are associated with white-spotted coat color in swamp buffalo. Anim Genet , 2015, 46(6): 676-682.
doi: 10.1111/age.12334 pmid: 26417640 |
[100] |
Leegwater PA, Van Hagen MA, Van Oost BA. Localization of white spotting locus in Boxer dogs on CFA20 by genome-wide linkage analysis with 1500 SNPs. J Hered , 2007, 98(5): 549-552.
doi: 10.1093/jhered/esm022 pmid: 17548862 |
[101] |
Schmutz SM, Berryere TG. Genes affecting coat colour and pattern in domestic dogs: a review. Anim Genet , 2007, 38(6): 539-549.
doi: 10.1111/j.1365-2052.2007.01664.x pmid: 18052939 |
[102] |
Wang GD, Cheng LG, Fan RX, Irwin DM, Tang SS, Peng JG, Zhang YP. Signature of balancing selection at the MC1R gene in Kunming dog populations. PLoS One , 2013, 8(2): e55469.
doi: 10.1371/journal.pone.0055469 pmid: 23424634 |
[103] |
Haase B, Brooks SA, Tozaki T, Burger D, Poncet PA, Rieder S, Hasegawa T, Penedo C, Leeb T. Seven novel KIT mutations in horses with white coat colour phenotypes. Anim Genet , 2009, 40(5): 623-629.
doi: 10.1111/j.1365-2052.2009.01893.x pmid: 19456317 |
[104] |
Negro S, Imsland F, Valera M, Molina A, Solé M, Andersson L. Association analysis of KIT, MITF, and PAX3 variants with white markings in Spanish horses. Anim Genet , 2017, 48(3): 349-352. Several variants in the KIT, PAX3 and MITF genes have previously been associated with white markings in horses. In this study, we examined eight variants of these genes in 70 Menorca Purebred horses (PRMe, only black solid-coloured horses) and 70 Spanish Purebred horses (PRE, different coat colour patterns) that were scored for the extent of white markings. A maximum-likelihood chi-square test, logistic regression model and ridge regression analyses showed that a missense mutation (p.Arg682His) in KIT was associated with white facial markings (P <0.05) and with total white markings (P < 0.05) in PRMe horses. The relative contribution of this variant to white markings in PRMe horses was estimated at 47.6% (head) and 43.4% (total score). In PRE horses, this variant was also associated with hindlimb scores (P < 0.05) with a relative contribution of 41.2%. The g.20147039C>T intronic variant located 29.9 kb downstream from the transcription start site of the MITF gene was associated with less white markings on forelimbs (P < 0.05) in PRMe horses, with a relative contribution of 63.9%, whereas in PRE horses this variant was associated with white facial markings (P < 0.05), with a relative contribution of 63.9%. No significant associations were found for PAX3 variants in these breeds. These results show that KIT and MITF variants are involved in the white marking patterns of both PRMe and PRE horses, providing breeders with an opportunity to use genetic testing to aid in breeding for their desired level of white markings.
doi: 10.1111/age.12528 pmid: 28084638 |
[105] | Zhao RY, Zhao YP, Li B, Bou G, Zhang XZ, Tao KT, Mongke T, Bao T, Gereliin S, Gereltuuin T, Li C, Bai DY, Dugarjaviin M. Overview of the genetic control of horse coat color patterns. Hereditas(Beijing) , 2018, 40(5): 357-368. |
赵若阳, 赵一萍, 李蓓, 格日乐其木格, 张心壮, 陶克涛, 图格琴, 旭仁其木格, 青柏, 李超, 白东义, 芒来. 马毛色遗传机理研究进展. 遗传, 2018, 40(5): 357-368. | |
[106] |
Song YN, Xu YX, Deng JC, Chen M, Lu Y, Wang Y, Yao HB, Zhou LN, Liu ZQ, Lai LX, Li ZJ. CRISPR/ Cas9-mediated mutation of tyrosinase (Tyr) 3ʹ UTR induce graying in rabbit. Sci Rep , 2017, 7(1): 1569.
doi: 10.1038/s41598-017-01727-y pmid: 28484254 |
[107] |
Yao LD, Bao A, Hong WJ, Hou CX, Zhang ZL, Liang XP, Aniwashi J. Transcriptome profiling analysis reveals key genes of different coat color in sheep skin. PeerJ , 2019, 7: e8077.
doi: 10.7717/peerj.8077 pmid: 31772839 |
[108] |
Anello M, Daverio MS, Silbestro MB, Vidal-Rioja L, Di Rocco F. Characterization and expression analysis of KIT and MITF-M genes in llamas and their relation to white coat color. Anim Genet , 2019, 50(2): 143-149.
doi: 10.1111/age.12769 pmid: 30730042 |
[109] | Holl H, Isaza R, Mohamoud Y, Ahmed A, Almathen F, Youcef C, Gaouar S, Antczak DF, Brooks S. A frameshift mutation in KIT is associated with white spotting in the Arabian camel. Genes(Basel) , 2017, 8(3): 102. |
[110] |
Yan SQ, Hou JN, Bai CY, Jiang Y, Zhang XJ, Ren HL, Sun BX, Zhao ZH, Sun JH. A base substitution in the donor site of intron 12 of KIT gene is responsible for the dominant white coat colour of blue fox(Alopex lagopus). Anim Genet , 2014, 45(2): 293-296.
doi: 10.1111/age.12105 |
[111] |
Hu SS, Chen Y, Zhao BH, Yang NS, Chen S, Shen JY, Bao GL, Wu XS. KIT is involved in melanocyte proliferation, apoptosis and melanogenesis in the Rex Rabbit. PeerJ , 2020, 8: e9402. Background: Melanocytes play an extremely important role in the process of skin and coat colors in mammals which is regulated by melanin-related genes. Previous studies have demonstrated that KIT is implicated in the process of determining the color of the coat in Rex rabbits. However, the effect of KIT on the proliferation and apoptosis of melanocytes and melanogenesis has not been clarified. Methods: The mRNA and protein expression levels of KIT were quantified in different coat colored rabbits by qRT-PCR and a Wes assay. To identify whether KIT functions by regulating of melanogenesis, KIT overexpression and knockdown was conducted in melanocytes, and KIT mRNA expression and melanin-related genes TYR, MITF, PMEL and DCT were quantified by qRT-PCR. To further confirm whether KIT influences melanogenesis in melanocytes, melanin content was quantified using NaOH lysis after overexpression and knockdown of KIT. Melanocyte proliferation was estimated using a CCK-8 assay at 0, 24, 48 and 72 h after transfection, and the rate of apoptosis of melanocytes was measured by fluorescence-activated cell sorting. Results: KITmRNA and protein expression levels were significantly different in the skin of Rex rabbits with different color coats (P < 0.05), the greatest levels observed in those with black skin. The mRNA expression levels of KIT significantly affected the mRNA expression of the pigmentation-related genes TYR, MITF, PMEL and DCT (P < 0.01). Melanin content was evidently regulated by the change in expression patterns of KIT (P < 0.01). In addition, KIT clearly promoted melanocyte proliferation, but inhibited apoptosis. Conclusions: Our results reveal that KIT is a critical gene in the regulation of melanogenesis, controlling proliferation and apoptosis in melanocytes, providing additional evidence for the mechanism of pigmentation of animal fur.
doi: 10.7717/peerj.9402 pmid: 32596061 |
[112] |
Wang CF, Li HJ, Guo Y, Huang JM, Sun Y, Min JM, Wang JP. Fang XD, Zhao ZC, Wang S, Zhang YL, Liu QF, Jiang Q, Wang XG, Guo YJ, Yang CH, Wang YC, Tian F, Zhuang GL, Fan YN, Gao QC, Li YH, Ju ZH, Li JB, Li RL, Hou MH, Yang GW, Liu GQ, Liu WQ, Guo J, Pan SS, Fan GY, Zhang W, Zhang RT, Yu J, Zhang XH, Yin Q, Ji CL, Jin YC, Yue GD, Liu M, Xu JK, Liu SM, Jordana J, Noce A, Amills M, Wu DD, Li SC, Zhou XS, Zhong JF. Donkey genomes provide new insights into domestication and selection for coat color. Nat Commun , 2020, 11(1): 6014.
doi: 10.1038/s41467-020-19813-7 pmid: 33293529 |
[113] |
Tian X, Jiang JB, Fan RW, Wang HD, Meng XL, He XY, He JP, Li HQ, Geng JJ, Yu XJ, Song YF, Zhang DL, Yao JB, Smith GW, Dong CS. Identification and characterization of microRNAs in white and brown alpaca skin. BMC Genomics , 2012, 13: 555.
doi: 10.1186/1471-2164-13-555 pmid: 23067000 |
[114] | Ji KY, Zhang PQ, Zhang JZ, Fan RW, Liu Y, Yang SS, Hu SP, Liu XX, Dong CS. MicroRNA 143-5 p regulates alpaca melanocyte migration, proliferation and melanogenesis. Exp Dermatol , 2018, 27(2): 166-171. |
[115] |
Zhu ZW, Ma YY, Li Y, Cheng ZX, Li HF, Zhang LH, Xu DM, Li PF. Comparison of miRNA-101a-3p and miRNA-144a-3p regulation with the key genes of alpaca melanocyte pigmentation. BMC Mol Biol , 2019, 20(1): 19.
doi: 10.1186/s12867-019-0137-8 pmid: 31412786 |
[116] |
Liu XX, Du B, Zhang PQ, Zhang JZ, Zhu ZW, Liu B, Fan RW. miR-380-3p regulates melanogenesis by targeting SOX6 in melanocytes from alpacas(Vicugna pacos). BMC Genomics , 2019, 20(1): 962.
doi: 10.1186/s12864-019-6343-4 pmid: 31823726 |
[117] |
Imes DL, Geary LA, Grahn RA, Lyons LA. Albinism in the domestic cat (Felis catus ) is associated with a tyrosinase (TYR) mutation . Anim Genet , 2006, 37(2): 175-178.
doi: 10.1111/j.1365-2052.2005.01409.x pmid: 16573534 |
[118] |
Kunieda T, Nakagiri M, Takami M, Ide H, Ogawa H. Cloning of bovine LYST gene and identification of a missense mutation associated with Chediak-Higashi syndrome of cattle. Mamm Genome , 1999, 10(12): 1146-1149.
doi: 10.1007/s003359901181 pmid: 10594238 |
[119] |
Stritzel S, Wöhlke A, Distl O. A role of the microphthalmia-associated transcription factor in congenital sensorineural deafness and eye pigmentation in Dalmatian dogs. J Anim Breed Genet , 2009, 126(1): 59-62.
doi: 10.1111/j.1439-0388.2008.00761.x pmid: 19207931 |
[120] |
Rosengren Pielberg G, Golovko A, Sundström E, Curik I, Lennartsson J, Seltenhammer MH, Druml T, Binns M, Fitzsimmons C, Lindgren G, Sandberg K, Baumung R, Vetterlein M, Strömberg S, Grabherr M, Wade C, Lindblad-Toh K, Pontén F, Heldin CH, Sölkner J, Andersson L. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet , 2008, 40(8): 1004-1009.
doi: 10.1038/ng.185 pmid: 18641652 |
[121] |
Teixeira RBC, Rendahl Ak, Anderson SM, Mickelson JR, Sigler D, Buchanan BR, Coleman RJ, McCue ME. Coat color genotypes and risk and severity of melanoma in gray quarter horses. J Vet Intern Med , 2013, 27(5): 1201-1208. Melanoma prevalence and severity is lower in this population of gray QH than what is reported in other breeds. This could be because of the infrequent STX17 homozygosity, a mitigating effect of the MC1R mutation on ASIP potentiation of melanoma, other genes in the MC1R signaling pathway, or differences in breed genetic background.
doi: 10.1111/jvim.12133 |
[122] |
Philipp U, Hamann H, Mecklenburg L, Nishino S, Mignot E, Günzel-Apel AR, Schmutz SM, Leeb T. Polymorphisms within the canine MLPH gene are associated with dilute coat color in dogs. BMC Genet , 2005, 6: 34.
doi: 10.1186/1471-2156-6-34 pmid: 15960853 |
[123] |
Metallinos DL, Bowling AT, Rine J. A missense mutation in the endothelin-B receptor gene is associated with Lethal White Foal Syndrome: an equine version of Hirschsprung disease. Mamm Genome , 1998, 9(6): 426-431.
doi: 10.1007/s003359900790 pmid: 9585428 |
[124] |
Baynash AG, Hosoda K, Giaid A, Richardson JA, Emoto N, Hammer RE, Yanagisawa M. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell , 1994, 79(7): 1277-1285.
doi: 10.1016/0092-8674(94)90018-3 pmid: 8001160 |
[125] |
Zühlke C, Stell A, Käsmann-Kellner B. Genetics of oculocutaneous albinism. Ophthalmologe , 2007, 104(8): 674-680. Albinismus, eine Gruppe nichtprogredienter genetisch bedingter Erkrankungen, ist charakterisiert durch fehlende Pigmentierung in Haut, Haar und/oder Augen. Der Pigmentmangel ist durch Defekte in der Synthese, dem Stoffwechsel oder der Verteilung von Melanin bedingt. Aus klinischer Sicht lassen sich okulokutane und okul?re Formen unterscheiden und von Syndromen, die mit Albinismus assoziiert sind, abgrenzen. Bei Betroffenen wurden bisher Mutationen in mindestens 14 Genen beschrieben. Für den rezessiv vererbten okulokutanen Albinismus (OCA) sind 4 Formen bekannt (OCA 1–OCA 4), die sich klinisch aufgrund der gro?en Variation im Erscheinungsbild kaum differenzieren lassen. Molekulargenetische Analysen k?nnen hier bei der Klassifizierung des Ph?notyps hilfreich sein bei. Durch Sequenzierung der entsprechenden Gene kann bei 60–70% der Betroffenen deutschen Ursprungs eine genetische Ver?nderung aufgedeckt werden. Die Mehrzahl dieser Patienten ist von OCA 1 betroffen. Diese Form ist mit Mutationen im Gen für Tyrosinase assoziiert, dem Schlüsselenzym in der Synthese des Pigments Melanin. Weltweit dagegen ist OCA 2 die h?ufigste Albinismusform.
doi: 10.1007/s00347-007-1590-1 |
[126] |
Wang Y, Wang Z, Chen MP, Fan N, Yang J, Liu L, Wang Y, Liu XY. Mutational analysis of the TYR and OCA2 genes in four Chinese families with oculocutaneous albinism. PLoS One , 2015, 10(4): e0125651.
doi: 10.1371/journal.pone.0125651 pmid: 25919014 |
[127] |
Lin Y, Chen XH, Yang Y, Che FY, Zhang SJ, Yuan LJ, Wu YM. Mutational analysis of TYR, OCA2, and SLC45A2 genes in Chinese families with oculocutaneous albinism. Mol Genet Genomic Med , 2019, 7(7): e00687.
doi: 10.1002/mgg3.687 pmid: 31199599 |
[1] | 巴恒星, 胡鹏飞, 李春义. 鹿科动物基因组学研究进展[J]. 遗传, 2021, 43(4): 308-322. |
[2] | 梅志超, 位竹君, 于佳慧, 冀凤丹, 解莉楠. 多组学关联分析揭示表观等位基因在拟南芥环境适应性进化中的作用及机制[J]. 遗传, 2020, 42(3): 321-331. |
[3] | 孟玉,杨若林. 基于基因家族大小的比较研究脊椎动物的适应性进化[J]. 遗传, 2019, 41(2): 158-174. |
[4] | 赵若阳, 赵一萍, 李蓓, 格日乐其木格, 张心壮, 陶克涛, 图格琴, 旭仁其木格, 青柏, 李超, 白东义, 芒来. 马毛色遗传机理研究进展[J]. 遗传, 2018, 40(5): 357-368. |
[5] | 陈天直, 赵兵令, 刘宇, 赵园园, 王海东, 范瑞文, 王鹏超, 董常生. GPR143在绵羊皮肤组织中的表达及定位分析[J]. 遗传, 2016, 38(7): 658-665. |
[6] | 李雪倩, 徐冉, 段朋根, 伍应保, 罗越华, 李云海. 水稻窄叶突变体zy17的遗传分析和候选基因鉴定[J]. 遗传, 2015, 37(6): 582-589. |
[7] | 梁运鹏, 于黎. 翼手目(蝙蝠)适应性进化分子机制的研究进展[J]. 遗传, 2015, 37(1): 25-33. |
[8] | 郎大田, 张亚平, 于黎. 核糖核酸酶基因超家族分子进化[J]. 遗传, 2014, 36(4): 316-326. |
[9] | 朱林江, 李崎. 环境胁迫诱导的细胞适应性突变[J]. 遗传, 2014, 36(4): 327-335. |
[10] | 邢万金,莫日根. 小鼠毛色遗传的控制机制及其在遗传学教学中的应用[J]. 遗传, 2014, 36(10): 1062-1068. |
[11] | 庞有志 许永飞. 白色獭兔蓝眼突变体的发现与遗传分析[J]. 遗传, 2013, 35(6): 786-792. |
[12] | 彭立新 孙菲菲 黄艳燕 黎贞崇. 酿酒酵母中亚硫酸盐转运基因SSU1的分子进化分析[J]. 遗传, 2013, 35(11): 1317-1326. |
[13] | 李蓓,何小龙,赵一萍,王晓静,芒来,张焱如. 马毛色遗传的分子基础与应用[J]. 遗传, 2010, 32(11): 1133-1140. |
[14] | 齐小琼,高磊,王艇. CVNH 结构域进化分析及选择压力检测[J]. 遗传, 2010, 32(1): 87-94. |
[15] | 甘海云,李建斌,王洪梅,高运东,刘文浩,李景鹏,仲跻峰. 牛黑素皮质素受体1(MC1R)基因与毛色表形的研究[J]. 遗传, 2007, 29(2): 195-195―200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: