遗传 ›› 2024, Vol. 46 ›› Issue (2): 109-125.doi: 10.16288/j.yczz.23-294
收稿日期:
2023-11-30
修回日期:
2024-01-02
出版日期:
2024-02-20
发布日期:
2024-01-25
通讯作者:
沈义栋
E-mail:yangyunfei@sibcb.ac.cn;yidong.shen@sibcb.ac.cn
作者简介:
杨韵霏,博士研究生,专业方向:衰老及衰老相关疾病的机理研究。E-mail: 基金资助:
Yunfei Yang1(), Yidong Shen2,3()
Received:
2023-11-30
Revised:
2024-01-02
Published:
2024-02-20
Online:
2024-01-25
Contact:
Yidong Shen
E-mail:yangyunfei@sibcb.ac.cn;yidong.shen@sibcb.ac.cn
Supported by:
摘要:
脉络丛由位于基底层上的上皮细胞组成,相邻脉络丛上皮细胞之间的紧密连接形成了血脑脊液屏障,它与血脑屏障一起对大脑微环境的稳态至关重要。脉络丛上皮可向脑室分泌脑脊液、生长因子、神经肽和脂类物质,同时脉络丛也是免疫细胞进入大脑的门户。衰老和神经退行性疾病的病理生理学仍然还存在大量未知,越来越多的研究将脉络丛与这些年龄相关性疾病的病因关联起来。本文综述了目前已知的脉络丛上皮与年龄相关疾病之间的关系,以期为防治相关疾病提供新的线索。
杨韵霏, 沈义栋. 脉络丛及其与衰老相关疾病的关系[J]. 遗传, 2024, 46(2): 109-125.
Yunfei Yang, Yidong Shen. Choroid plexus and its relations with age-related diseases[J]. Hereditas(Beijing), 2024, 46(2): 109-125.
[1] |
Johanson CE, Stopa EG, Mcmillan PN. The blood- cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol, 2011, 686: 101-131.
doi: 10.1007/978-1-60761-938-3_4 pmid: 21082368 |
[2] |
Cserr HF. Physiology of the choroid plexus. Physiol Rev, 1971, 51(2): 273-311.
pmid: 4930496 |
[3] |
Mortazavi MM, Griessenauer CJ, Adeeb N, Deep A, Bavarsad Shahripour R, Loukas M, Tubbs RI, Tubbs RS. The choroid plexus: a comprehensive review of its history, anatomy, function, histology, embryology, and surgical considerations. Childs Nerv Syst, 2014, 30(2): 205-214.
doi: 10.1007/s00381-013-2326-y |
[4] |
Spector R, Keep RF, Robert Snodgrass S, Smith QR, Johanson CE. A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol, 2015, 267: 78-86.
doi: 10.1016/j.expneurol.2015.02.032 pmid: 25747036 |
[5] |
Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol, 2018, 135(3): 337-361.
doi: 10.1007/s00401-018-1807-1 |
[6] |
Kaur C, Rathnasamy G, Ling EA. The choroid plexus in healthy and diseased brain. J Neuropathol Exp Neurol, 2016, 75(3): 198-213.
doi: 10.1093/jnen/nlv030 |
[7] |
Cornford EM, Varesi JB, Hyman S, Damian RT, Raleigh MJ. Mitochondrial content of choroid plexus epithelium. Exp Brain Res, 1997, 116(3): 399-405.
doi: 10.1007/pl00005768 pmid: 9372289 |
[8] |
Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev, 2013, 93(4): 1847-1892.
doi: 10.1152/physrev.00004.2013 pmid: 24137023 |
[9] |
Municio C, Carrero L, Antequera D, Carro E. Choroid plexus aquaporins in CSF homeostasis and the glymphatic system: their relevance for Alzheimer's disease. Int J Mol Sci, 2023, 24(1): 878.
doi: 10.3390/ijms24010878 |
[10] |
Li CL, Wang WD. Molecular biology of aquaporins. Adv Exp Med Biol, 2017, 969: 1-34.
doi: 10.1007/978-94-024-1057-0_1 pmid: 28258563 |
[11] |
Nielsen S, Smith BL, Christensen EI, Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA, 1993, 90(15): 7275-7279.
pmid: 8346245 |
[12] |
Masseguin C, Corcoran M, Carcenac C, Daunton NG, Güell A, Verkman AS, Gabrion J.Altered gravity downregulates aquaporin-1 protein expression in choroid plexus. J Appl Physiol (1985), 2000, 88(3): 843-850.
doi: 10.1152/jappl.2000.88.3.843 |
[13] |
Praetorius J, Nielsen S. Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol, 2006, 291(1): C59-C67.
doi: 10.1152/ajpcell.00433.2005 |
[14] |
Boassa D, Yool AJ. A fascinating tail: cGMP activation of aquaporin-1 ion channels. Trends Pharmacol Sci, 2002, 23(12): 558-562.
pmid: 12457773 |
[15] |
Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT.Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J, 2005, 19(1): 76-78.
doi: 10.1096/fj.04-1711fje pmid: 15533949 |
[16] |
Speake T, Freeman LJ, Brown PD. Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta, 2003, 1609(1): 80-86.
pmid: 12507761 |
[17] |
Deffner F, Gleiser C, Mattheus U, Wagner A, Neckel PH, Fallier-Becker P, Hirt B, Mack AF. Aquaporin-4 expression in the human choroid plexus. Cell Mol Life Sci, 2022, 79(2): 90.
doi: 10.1007/s00018-022-04136-1 pmid: 35072772 |
[18] |
Yang M, Gao F, Liu H, Yu WH, He GQ, Zhuo F, Qiu GP, Sun SQ. Immunolocalization of aquaporins in rat brain. Anat Histol Embryol, 2011, 40(4): 299-306.
doi: 10.1111/j.1439-0264.2011.01070.x pmid: 21496068 |
[19] |
Lambertz N, Hindy NE, Adler C, Rump K, Adamzik M, Keyvani K, Bankfalvi A, Siffert W, Erol Sandalcioglu I, Bachmann HS. Expression of aquaporin 5 and the AQP5 polymorphism A(-1364)C in association with peritumoral brain edema in meningioma patients. J Neurooncol, 2013, 112(2): 297-305.
doi: 10.1007/s11060-013-1064-z |
[20] |
Kuriyama H, Kawamoto S, Ishida N, Ohno I, Mita S, Matsuzawa Y, Matsubara K, Okubo K. Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability. Biochem Biophys Res Commun, 1997, 241(1): 53-58.
doi: 10.1006/bbrc.1997.7769 |
[21] |
Shin I, Kim HJ, Lee JE, Gye MC. Aquaporin 7 expression during perinatal development of mouse brain. Neurosci Lett, 2006, 409(2): 106-111.
doi: 10.1016/j.neulet.2006.09.075 |
[22] |
Hughes ALH, Pakhomova A, Brown PD. Regulatory volume increase in epithelial cells isolated from the mouse fourth ventricle choroid plexus involves Na+-H+ exchange but not Na+-K+-2Cl- cotransport. Brain Res, 2010, 1323: 1-10.
doi: 10.1016/j.brainres.2009.12.094 |
[23] | Johansson PA. The choroid plexuses and their impact on developmental neurogenesis. Front Neurosci, 2014, 8: 340. |
[24] |
Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F. Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell, 2016, 19(5): 643-652.
doi: S1934-5909(16)30163-1 pmid: 27452173 |
[25] |
Salehi Z, Mashayekhi F, Naji M, Pandamooz S. Insulin-like growth factor-1 and insulin-like growth factor binding proteins in cerebrospinal fluid during the development of mouse embryos. J Clin Neurosci, 2009, 16(7): 950-953.
doi: 10.1016/j.jocn.2008.09.018 pmid: 19359179 |
[26] |
Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D'ercole AJ, Wong ET, Lamantia AS, Walsh CA. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron, 2011, 69(5): 893-905.
doi: 10.1016/j.neuron.2011.01.023 pmid: 21382550 |
[27] |
Ziegler AN, Schneider JS, Qin M, Tyler WA, Pintar JE, Fraidenraich D, Wood TL, Levison SW. IGF-II promotes stemness of neural restricted precursors. Stem Cells, 2012, 30(6): 1265-1276.
doi: 10.1002/stem.1095 pmid: 22593020 |
[28] |
Dechiara TM, Robertson EJ, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell, 1991, 64(4): 849-859.
doi: 10.1016/0092-8674(91)90513-x pmid: 1997210 |
[29] |
Walter HJ, Berry M, Hill DJ, Cwyfan-Hughes S, Holly JM, Logan A. Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity. Endocrinology, 1999, 140(1): 520-532.
pmid: 9886865 |
[30] |
Maharaj ASR, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC, Matharu KS, Karumanchi SA, D'amore PA. VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med, 2008, 205(2): 491-501.
doi: 10.1084/jem.20072041 |
[31] |
Szmydynger-Chodobska J, Chun ZG, Johanson CE, Chodobski A. Distribution of fibroblast growth factor receptors and their co-localization with vasopressin in the choroid plexus epithelium. Neuroreport, 2002, 13(2): 257-259.
pmid: 11893921 |
[32] |
Alalwany RH, Hawtrey T, Morgan K, Morris JC, Donaldson LF, Bates DO. Vascular endothelial growth factor isoforms differentially protect neurons against neurotoxic events associated with Alzheimer's disease. Front Mol Neurosci, 2023, 16: 1181626.
doi: 10.3389/fnmol.2023.1181626 |
[33] |
Huang YP, Liu ZL, Wang X, Li YX, Liu L, Li B. TGF-β3 protects neurons against intermittent hypoxia-induced oxidative stress and apoptosis through activation of the Nrf-2/KEAP1/HO-1 pathway via binding to TGF-βRI. Neurochem Res, 2023, 48(9): 2808-2825.
doi: 10.1007/s11064-023-03942-8 pmid: 37140776 |
[34] |
Johanson C, Mcmillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E. Homeostatic capabilities of the choroid plexus epithelium in Alzheimer's disease. Cerebrospinal Fluid Res, 2004, 1(1): 3.
pmid: 15679944 |
[35] |
Chodobski A, Szmydynger-Chodobska J. Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech, 2001, 52(1): 65-82.
doi: 10.1002/(ISSN)1097-0029 |
[36] |
Huang X, Ketova T, Fleming JT, Wang HB, Dey SK, Litingtung Y, Chiang C. Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development, 2009, 136(15): 2535-2543.
doi: 10.1242/dev.033795 pmid: 19570847 |
[37] |
Yamamoto M, Mccaffery P, Dräger UC. Influence of the choroid plexus on cerebellar development: analysis of retinoic acid synthesis. Brain Res Dev Brain Res, 1996, 93(1-2): 182-190.
doi: 10.1016/0165-3806(96)00038-7 |
[38] |
Cho PY, Joshi G, Johnson JA, Murphy RM. Transthyretin-derived peptides as β-amyloid inhibitors. ACS Chem Neurosci, 2014, 5(7): 542-551.
doi: 10.1021/cn500014u pmid: 24689444 |
[39] | Bátiz LF, Castro MA, Burgos PV, Velásquez ZD, Muñoz RI, Lafourcade CA, Troncoso-Escudero P, Wyneken U. Exosomes as novel regulators of adult neurogenic niches. Front Cell Neurosci, 2016, 9: 501. |
[40] |
Muok L, Liu C, Chen XC, Esmonde C, Arthur P, Wang XJ, Singh M, Driscoll T, Li Y. Inflammatory response and exosome biogenesis of choroid plexus organoids derived from human pluripotent stem cells. Int J Mol Sci, 2023, 24(8): 7660
doi: 10.3390/ijms24087660 |
[41] | Ditte Z, Silbern I, Ditte P, Urlaub H, Eichele G. Extracellular vesicles derived from the choroid plexus trigger the differentiation of neural stem cells. J Extracell Vesicles, 2022, 11(11): e12276. |
[42] |
Strazielle N, Ghersi-Egea JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm, 2013, 10(5): 1473-1491.
doi: 10.1021/mp300518e |
[43] |
Matsumoto K, Chiba Y, Fujihara R, Kubo H, Sakamoto H, Ueno M. Immunohistochemical analysis of transporters related to clearance of amyloid-β peptides through blood-cerebrospinal fluid barrier in human brain. Histochem Cell Biol, 2015, 144(6): 597-611.
doi: 10.1007/s00418-015-1366-7 pmid: 26449856 |
[44] |
Furtado A, Mineiro R, Duarte AC, Gonçalves I, Santos CR, Quintela T. The daily expression of ABCC4 at the BCSFB affects the transport of its substrate methotrexate. Int J Mol Sci, 2022, 23(5): 2443.
doi: 10.3390/ijms23052443 |
[45] |
Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD, Tiribelli C, Ghersi-Egea JF. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J Comp Neurol, 2008, 510(5): 497-507.
doi: 10.1002/cne.21808 pmid: 18680196 |
[46] |
Roberts LM, Black DS, Raman C, Woodford K, Zhou M, Haggerty JE, Yan AT, Cwirla SE, Grindstaff KK. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience, 2008, 155(2): 423-438.
doi: 10.1016/j.neuroscience.2008.06.015 pmid: 18619525 |
[47] |
Urquhart BL, Kim RB. Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol, 2009, 65(11): 1063-1670.
doi: 10.1007/s00228-009-0714-8 pmid: 19727692 |
[48] |
Ose A, Kusuhara H, Endo C, Tohyama K, Miyajima M, Kitamura S, Sugiyama Y. Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Drug Metab Dispos, 2010, 38(1): 168-176.
doi: 10.1124/dmd.109.029454 pmid: 19833843 |
[49] |
Bhattacharya I, Boje KMK. GHB (gamma- hydroxybutyrate) carrier-mediated transport across the blood-brain barrier. J Pharmacol Exp Ther, 2004, 311(1): 92-98.
pmid: 15173314 |
[50] |
Spector R. Nutrient transport systems in brain: 40 years of progress. J Neurochem, 2009, 111(2): 315-320.
doi: 10.1111/j.1471-4159.2009.06326.x pmid: 19686385 |
[51] |
Uchida Y, Zhang ZY, Tachikawa M, Terasaki T. Quantitative targeted absolute proteomics of rat blood- cerebrospinal fluid barrier transporters: comparison with a human specimen. J Neurochem, 2015, 134(6): 1104-1115.
doi: 10.1111/jnc.13147 pmid: 25951748 |
[52] |
Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol, 2000, 20(1): 77-95.
doi: 10.1023/a:1006948027674 pmid: 10690503 |
[53] |
Bryniarski MA, Ren TJ, Rizvi AR, Snyder AM, Morris ME. Targeting the choroid plexuses for protein drug delivery. Pharmaceutics, 2020, 12(10): 963.
doi: 10.3390/pharmaceutics12100963 |
[54] |
Aldred AR, Dickson PW, Marley PD, Schreiber G. Distribution of transferrin synthesis in brain and other tissues in the rat. J Biol Chem, 1987, 262(11): 5293-5297.
pmid: 3558394 |
[55] |
Morris CM, Candy JM, Bloxham CA, Edwardson JA. Immunocytochemical localisation of transferrin in the human brain. Acta Anat (Basel), 1992, 143(1): 14-18.
pmid: 1585785 |
[56] |
Baskin DG, Brewitt B, Davidson DA, Corp E, Paquette T, Figlewicz DP, Lewellen TK, Graham MK, Woods SG, Dorsa DM. Quantitative autoradiographic evidence for insulin receptors in the choroid plexus of the rat brain. Diabetes, 1986, 35(2): 246-249.
pmid: 3510931 |
[57] |
Werther GA, Hogg A, Oldfield BJ, Mckinley MJ, Figdor R, Mendelsohn FA. Localization and characterization of insulin-like growth factor-i receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry* a distinct distribution from insulin receptors. J Neuroendocrinol, 1989, 1(5): 369-377.
doi: 10.1111/j.1365-2826.1989.tb00131.x pmid: 19210430 |
[58] |
Marks JL, Porte D, Baskin DG. Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol, 1991, 5(8): 1158-1168.
pmid: 1658638 |
[59] |
Ayer-Le Lievre C, Ståhlbom PA, Sara VR. Expression of IGF-I and -II mRNA in the brain and craniofacial region of the rat fetus. Development, 1991, 111(1): 105-115.
doi: 10.1242/dev.111.1.105 pmid: 2015788 |
[60] |
Lee WH, Michels KM, Bondy CA. Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: correlation with insulin-like growth factors I and II. Neuroscience, 1993, 53(1): 251-265.
doi: 10.1016/0306-4522(93)90303-w pmid: 7682300 |
[61] |
Bolós M, Fernandez S, Torres-Aleman I. Oral administration of a GSK3 inhibitor increases brain insulin-like growth factor I levels. J Biol Chem, 2010, 285(23): 17693-17700.
doi: 10.1074/jbc.M109.096594 pmid: 20351102 |
[62] |
Lippoldt A, Liebner S, Andbjer B, Kalbacher H, Wolburg H, Haller H, Fuxe K. Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C. Neuroreport, 2000, 11(7): 1427-1431.
pmid: 10841351 |
[63] |
Wolburg H, Wolburg-Buchholz K, Liebner S, Engelhardt B. Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett, 2001, 307(2): 77-80.
pmid: 11427304 |
[64] |
Kooij G, Kopplin K, Blasig R, Stuiver M, Koning N, Goverse G, Van Der Pol SMA, Van Het Hof B, Gollasch M, Drexhage JAR, Reijerkerk A, Meij IC, Mebius R, Willnow TE, Müller D, Blasig IE, De Vries HE,. Disturbed function of the blood-cerebrospinal fluid barrier aggravates neuro-inflammation. Acta Neuropathol, 2014, 128(2): 267-277.
doi: 10.1007/s00401-013-1227-1 pmid: 24356983 |
[65] |
Aijaz S, Balda MS, Matter K. Tight junctions: molecular architecture and function. Int Rev Cytol, 2006, 248: 261-298.
pmid: 16487793 |
[66] |
Campos Y, Qiu XH, Gomero E, Wakefield R, Horner L, Brutkowski W, Han YG, Solecki D, Frase S, Bongiovanni A, D'azzo A. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun, 2016, 7: 11876.
doi: 10.1038/ncomms11876 pmid: 27336173 |
[67] | Meng WX, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol, 2009, 1(6): a002899. |
[68] |
Vorbrodt AW, Dobrogowska DH. Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist's view. Brain Res Brain Res Rev, 2003, 42(3): 221-242.
doi: 10.1016/S0165-0173(03)00177-2 |
[69] |
Tietz S, Engelhardt B. Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol, 2015, 209(4): 493-506.
doi: 10.1083/jcb.201412147 pmid: 26008742 |
[70] |
Lagaraine C, Skipor J, Szczepkowska A, Dufourny L, Thiery JC. Tight junction proteins vary in the choroid plexus of ewes according to photoperiod. Brain Res, 2011, 1393: 44-51.
doi: 10.1016/j.brainres.2011.04.009 pmid: 21529785 |
[71] |
Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol, 1969, 40(3): 648-677.
pmid: 5765759 |
[72] |
Rosenthal R, Günzel D, Krug SM, Schulzke JD, Fromm M, Yu ASL. Claudin-2-mediated cation and water transport share a common pore. Acta Physiol (Oxf), 2017, 219(2): 521-536.
doi: 10.1111/apha.12742 pmid: 27359349 |
[73] |
Christensen O. Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature, 1987, 330(6143): 66-68.
doi: 10.1038/330066a0 |
[74] |
Kivisäkk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu LJ, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA, 2003, 100(14): 8389-8394.
pmid: 12829791 |
[75] |
Serot JM, Foliguet B, Béné MC, Faure GC. Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport, 1997, 8(8): 1995-1998.
pmid: 9223091 |
[76] |
Nathanson JA, Chun LL. Immunological function of the blood-cerebrospinal fluid barrier. Proc Natl Acad Sci USA, 1989, 86(5): 1684-1688.
pmid: 2784211 |
[77] |
Ling EA. Ultrastructure and mode of formation of epiplexus cells in the choroid plexus in the lateral ventricles of the monkey (Macaca fascicularis). J Anat, 1981, 133(Pt 4): 555-569.
pmid: 7333962 |
[78] | Xu HX, Lotfy P, Gelb S, Pragana A, Hehnly C, Shipley FB, Zawadzki ME, Cui J, Deng LW, Taylor M, Webb M, Lidov HGW, Andermann ML, Chiu IM, Ordovas- Montanes J, Lehtinen MK. A collaboration between immune cells and the choroid plexus epithelium in brain inflammation. bioRxiv, 2023, doi: 10.1101/2023.08.07.552298. |
[79] |
Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, Schwartz M. IFN-γ-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair. Brain, 2013, 136(Pt 11): 3427-3440.
doi: 10.1093/brain/awt259 pmid: 24088808 |
[80] |
Deczkowska A, Baruch K, Schwartz M. Type I/II interferon balance in the regulation of brain physiology and pathology. Trends Immunol, 2016, 37(3): 181-192.
doi: S1471-4906(16)00007-7 pmid: 26877243 |
[81] |
Serot JM, Foliguet B, Béné MC, Faure GC. Choroid plexus and ageing in rats: a morphometric and ultrastructural study. Eur J Neurosci, 2001, 14(5): 794-798.
pmid: 11576183 |
[82] |
Serot JM, Béné MC, Faure GC. Choroid plexus, aging of the brain, and Alzheimer's disease. Front Biosci, 2003, 8: s515-s521.
doi: 10.2741/1085 |
[83] |
Preston JE. Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech, 2001, 52(1): 31-37.
doi: 10.1002/(ISSN)1097-0029 |
[84] |
Eriksson L, Westermark P. Intracellular neurofibrillary tangle-like aggregations. A constantly present amyloid alteration in the aging choroid plexus. Am J Pathol, 1986, 125(1): 124-129.
pmid: 3022590 |
[85] |
Wen GY, Wisniewski HM, Kascsak RJ. Biondi ring tangles in the choroid plexus of Alzheimer's disease and normal aging brains: a quantitative study. Brain Res, 1999, 832(1-2): 40-46.
pmid: 10375650 |
[86] |
Modic MT, Weinstein MA, Rothner AD, Erenberg G, Duchesneau PM, Kaufman B. Calcification of the choroid plexus visualized by computed tomography. Radiology, 1980, 135(2): 369-372.
pmid: 7367628 |
[87] |
Scarpetta V, Bodaleo F, Salio C, Agarwal A, Sassoè- Pognetto M, Patrizi A. Morphological and mitochondrial changes in murine choroid plexus epithelial cells during healthy aging. Fluids Barriers CNS, 2023, 20(1): 19.
doi: 10.1186/s12987-023-00420-9 pmid: 36918889 |
[88] |
Nakae D, Akai H, Kishida H, Kusuoka O, Tsutsumi M, Konishi Y. Age and organ dependent spontaneous generation of nuclear 8-hydroxydeoxyguanosine in male Fischer 344 rats. Lab Invest, 2000, 80(2): 249-261.
doi: 10.1038/labinvest.3780028 pmid: 10701694 |
[89] |
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS, 2020, 17(1): 35.
doi: 10.1186/s12987-020-00196-2 pmid: 32375819 |
[90] |
Gideon P, Thomsen C, Ståhlberg F, Henriksen O. Cerebrospinal fluid production and dynamics in normal aging: a MRI phase-mapping study. Acta Neurol Scand, 1994, 89(5): 362-366.
pmid: 8085434 |
[91] |
May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI. Cerebrospinal fluid production is reduced in healthy aging. Neurology, 1990, 40(3 Pt 1): 500-503.
pmid: 2314595 |
[92] |
Eisma JJ, Mcknight CD, Hett K, Elenberger J, Song AK, Stark AJ, Claassen DO, Donahue MJ. Choroid plexus perfusion and bulk cerebrospinal fluid flow across the adult lifespan. J Cereb Blood Flow Metab, 2023, 43(2): 269-280.
doi: 10.1177/0271678X221129101 |
[93] |
Frolkis VV, Kvitnitskaya-Ryzhova TY, Dubiley TA. Vasopressin, hypothalamo-neurohypophyseal system and aging. Arch Gerontol Geriatr, 1999, 29(3): 193-214.
doi: 10.1016/S0167-4943(99)00032-1 |
[94] |
Chen CPC, Preston JE, Zhou SB, Fuller HR, Morgan DGA, Chen RL. Proteomic analysis of age-related changes in ovine cerebrospinal fluid. Exp Gerontol, 2018, 108: 181-188.
doi: S0531-5565(18)30163-3 pmid: 29704639 |
[95] |
Chiu C, Miller MC, Caralopoulos IN, Worden MS, Brinker T, Gordon ZN, Johanson CE, Silverberg GD. Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months. Fluids Barriers CNS, 2012, 9(1): 3.
doi: 10.1186/2045-8118-9-3 pmid: 22269091 |
[96] |
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res, 2008, 5: 10.
doi: 10.1186/1743-8454-5-10 pmid: 18479516 |
[97] |
Serot JM, Zmudka J, Jouanny P. A possible role for CSF turnover and choroid plexus in the pathogenesis of late onset Alzheimer's disease. J Alzheimers Dis, 2012, 30(1): 17-26.
doi: 10.3233/JAD-2012-111964 |
[98] |
Peters K, Herman S, Khoonsari PE, Burman J, Neumann S, Kultima K. Metabolic drift in the aging nervous system is reflected in human cerebrospinal fluid. Sci Rep, 2021, 11(1): 18822.
doi: 10.1038/s41598-021-97491-1 pmid: 34552125 |
[99] |
Carlsson H, Rollborn N, Herman S, Freyhult E, Svenningsson A, Burman J, Kultima K. Metabolomics of cerebrospinal fluid from healthy subjects reveal metabolites associated with ageing. Metabolites, 2021, 11(2): 126.
doi: 10.3390/metabo11020126 |
[100] |
Demeestere D, Libert C, Vandenbroucke RE. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov Today, 2015, 20(8): 928-941.
doi: 10.1016/j.drudis.2015.05.003 pmid: 25979470 |
[101] |
Baruch K, Kertser A, Porat Z, Schwartz M. Cerebral nitric oxide represses choroid plexus NFκB-dependent gateway activity for leukocyte trafficking. EMBO J, 2015, 34(13): 1816-1828.
doi: 10.15252/embj.201591468 pmid: 25940071 |
[102] |
Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, Berkutzki T, Barnett-Itzhaki Z, Bezalel D, Wyss-Coray T, Amit I, Schwartz M. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science, 2014, 346(6205): 89-93.
doi: 10.1126/science.1252945 pmid: 25147279 |
[103] |
Alisch JSR, Kiely M, Triebswetter C, Alsameen MH, Gong ZY, Khattar N, Egan JM, Bouhrara M. Characterization of age-related differences in the human choroid plexus volume, microstructural integrity, and blood perfusion using multiparameter magnetic resonance imaging. Front Aging Neurosci, 2021, 13: 734992.
doi: 10.3389/fnagi.2021.734992 |
[104] |
Heidari A, Yazdanpanah N, Rezaei N. The role of Toll-like receptors and neuroinflammation in Parkinson's disease. J Neuroinflammation, 2022, 19(1): 135.
doi: 10.1186/s12974-022-02496-w |
[105] |
Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, Kremer A, Van Hove I, Moons L, De Strooper B, Kanazir S, Libert C, Vandenbroucke RE. Amyloid β oligomers disrupt blood-CSF barrier integrity by activating matrix metalloproteinases. J Neurosci, 2015, 35(37): 12766-12778.
doi: 10.1523/JNEUROSCI.0006-15.2015 pmid: 26377465 |
[106] |
Serot JM, Béné MC, Foliguet B, Faure GC. Morphological alterations of the choroid plexus in late-onset Alzheimer's disease. Acta Neuropathol, 2000, 99(2): 105-108.
pmid: 10672315 |
[107] |
González-Marrero I, Giménez-Llort L, Johanson CE, Carmona-Calero EM, Castañeyra-Ruiz L, Brito-Armas JM, Castañeyra-Perdomo A, Castro-Fuentes R. Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer's disease. Front Cell Neurosci, 2015, 9: 17.
doi: 10.3389/fncel.2015.00017 pmid: 25705176 |
[108] |
Reeg S, Grune T. Protein oxidation in aging: does it play a role in aging progression? Antioxid Redox Signal, 2015, 23(3): 239-255.
doi: 10.1089/ars.2014.6062 |
[109] |
Bergen AA, Kaing S, Ten Brink JB, Netherlands Brain Bank, Gorgels TG, Janssen SF. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer's disease. BMC Genomics, 2015, 16: 956.
doi: 10.1186/s12864-015-2159-z pmid: 26573292 |
[110] |
Kant S, Stopa EG, Johanson CE, Baird A, Silverberg GD. Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer's disease. Fluids Barriers CNS, 2018, 15(1): 34.
doi: 10.1186/s12987-018-0120-7 pmid: 30541599 |
[111] |
Gu HY, Zhong ZH, Jiang W, Du E, Dodel R, Farlow MR, Zheng W, Du YS. The role of choroid plexus in IVIG-induced beta-amyloid clearance. Neuroscience, 2014, 270: 168-176.
doi: 10.1016/j.neuroscience.2014.04.011 pmid: 24747018 |
[112] |
Ott BR, Cohen RA, Gongvatana A, Okonkwo OC, Johanson CE, Stopa EG, Donahue JE, Silverberg GD. Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer's disease. J Alzheimers Dis, 2010, 20(2): 647-657.
doi: 10.3233/JAD-2010-1406 pmid: 20182051 |
[113] |
Sagare AP, Deane R, Zlokovic BV. Low-density lipoprotein receptor-related protein 1: a physiological Aβ homeostatic mechanism with multiple therapeutic opportunities. Pharmacol Ther, 2012, 136(1): 94-105.
doi: 10.1016/j.pharmthera.2012.07.008 |
[114] |
Deane RJ. Is RAGE still a therapeutic target for Alzheimer's disease? Future Med Chem, 2012, 4(7): 915-925.
doi: 10.4155/fmc.12.51 pmid: 22571615 |
[115] |
Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS, 2011, 8: 21.
doi: 10.1186/2045-8118-8-21 pmid: 21740544 |
[116] |
Stopa EG, Tanis KQ, Miller MC, Nikonova EV, Podtelezhnikov AA, Finney EM, Stone DJ, Camargo LM, Parker L, Verma A, Baird A, Donahue JE, Torabi T, Eliceiri BP, Silverberg GD, Johanson CE. Comparative transcriptomics of choroid plexus in Alzheimer's disease, frontotemporal dementia and Huntington's disease: implications for CSF homeostasis. Fluids Barriers CNS, 2018, 15(1): 18.
doi: 10.1186/s12987-018-0102-9 pmid: 29848382 |
[117] |
Tarkowski E, Andreasen N, Tarkowski A, Blennow K. Intrathecal inflammation precedes development of Alzheimer's disease. J Neurol Neurosurg Psychiatry, 2003, 74(9): 1200-1205.
doi: 10.1136/jnnp.74.9.1200 |
[118] |
Tarkowski E, Liljeroth AM, Minthon L, Tarkowski A, Wallin A, Blennow K. Cerebral pattern of pro- and anti-inflammatory cytokines in dementias. Brain Res Bull, 2003, 61(3): 255-260.
doi: 10.1016/s0361-9230(03)00088-1 pmid: 12909295 |
[119] |
Castellani G, Croese T, Peralta Ramos JM, Schwartz M. Transforming the understanding of brain immunity. Science, 2023, 380(6640): eabo7649.
doi: 10.1126/science.abo7649 |
[120] |
Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, Tsitsou-Kampeli A, Sarel A, Cahalon L, Schwartz M. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun, 2015, 6: 7967.
doi: 10.1038/ncomms8967 pmid: 26284939 |
[121] |
Butler T, Wang XH, Chiang GC, Li Y, Zhou L, Xi K, Wickramasuriya N, Tanzi E, Spector E, Ozsahin I, Mao X, Razlighi QR, Fung EK, Dyke JP, Maloney T, Gupta A, Raj A, Shungu DC, Mozley PD, Rusinek H, Glodzik L. Choroid plexus calcification correlates with cortical microglial activation in humans: a multimodal PET, CT, MRI study. AJNR Am J Neuroradiol, 2023, 44(7): 776-782.
doi: 10.3174/ajnr.A7903 |
[122] |
Jeong SH, Jeong HJ, Sunwoo MK, Ahn SS, Lee SK, Lee PH, Kim YJ, Sohn YH, Park CJ, Chung SJ. Association between choroid plexus volume and cognition in Parkinson disease. Eur J Neurol, 2023, 30(10) : 3114-3123.
doi: 10.1111/ene.v30.10 |
[123] |
Gaceb A, Barbariga M, Paul G. An in vitro partial lesion model of differentiated human mesencephalic neurons: effect of pericyte secretome on phenotypic markers. J Mol Neurosci, 2020, 70(11): 1914-1925.
doi: 10.1007/s12031-020-01589-6 |
[124] |
Boroujeni ME, Gardaneh M, Shahriari MH, Aliaghaei A, Hasani S. Synergy between choroid plexus epithelial cell-conditioned medium and knockout serum replacement converts human adipose-derived stem cells to dopamine-secreting neurons. Rejuvenation Res, 2017, 20(4): 309-319.
doi: 10.1089/rej.2016.1887 pmid: 28437187 |
[125] |
Li YY, Zhou TT, Zhang Y, Chen NH, Yuan YH. Distribution of α-synuclein aggregation in the peripheral tissues. Neurochem Res, 2022, 47(12): 3627-3634.
doi: 10.1007/s11064-022-03586-0 |
[126] |
Hasavci D, Blank T. Age-dependent effects of gut microbiota metabolites on brain resident macrophages. Front Cell Neurosci, 2022, 16: 944526.
doi: 10.3389/fncel.2022.944526 |
[127] |
Borlongan CV, Skinner SJM, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF. Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke, 2004, 35(9): 2206-2210.
pmid: 15284450 |
[128] |
Emerich DF, Vasconcellos AV, Elliott RB, Skinner SJM, Borlongan CV. The choroid plexus: function, pathology and therapeutic potential of its transplantation. Expert Opin Biol Ther, 2004, 4(8): 1191-1201.
pmid: 15268655 |
[129] | Luo XM, Lin H, Wang W, Geaney MS, Law L, Wynyard S, Shaikh SB, Waldvogel H, Faull RLM, Elliott RB, Skinner SJM, Lee JE, Tan PLJ. Recovery of neurological functions in non-human primate model of Parkinson's disease by transplantation of encapsulated neonatal porcine choroid plexus cells. J Parkinsons Dis, 2013, 3(3): 275-291. |
[130] |
Eslami M, Oryan SH, Rahnema M, Bigdeli MR. Neuroprotective effects of normobaric hyperoxia and transplantation of encapsulated choroid plexus epithelial cells on the focal brain ischemia. Cell J, 2021, 23(3): 303-312.
doi: 10.22074/cellj.2021.7204 pmid: 34308573 |
[131] |
Matsumoto N, Taguchi A, Kitayama H, Watanabe Y, Ohta M, Yoshihara T, Itokazu Y, Dezawa M, Suzuki Y, Sugimoto H, Noda M, Ide C. Transplantation of cultured choroid plexus epithelial cells via cerebrospinal fluid shows prominent neuroprotective effects against acute ischemic brain injury in the rat. Neurosci Lett, 2010, 469(3): 283-288.
doi: 10.1016/j.neulet.2009.09.060 pmid: 19800935 |
[132] |
Iram T, Kern F, Kaur A, Myneni S, Morningstar AR, Shin H, Garcia MA, Yerra L, Palovics R, Yang AC, Hahn O, Lu NN, Shuken SR, Haney MS, Lehallier B, Iyer M, Luo J, Zetterberg H, Keller A, Zuchero JB, Wyss-Coray T.Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature, 2022, 605(7910): 509-515.
doi: 10.1038/s41586-022-04722-0 |
[133] |
Pedersen SH, Prein TH, Ammar A, Grotenhuis A, Hamilton MG, Hansen TS, Kehler U, Rekate H, Thomale UW, Juhler M. How to define CSF overdrainage: a systematic literature review. Acta Neurochir (Wien), 2023, 165(2): 429-441.
doi: 10.1007/s00701-022-05469-3 pmid: 36639536 |
[1] | 何山, 赵健, 宋晓峰. N6-甲基腺苷修饰对女性生殖系统功能的影响[J]. 遗传, 2023, 45(6): 472-487. |
[2] | 商晓康, 张思萌, 倪军军. 组织蛋白酶B参与脑衰老及阿尔兹海默症发生发展研究进展[J]. 遗传, 2023, 45(3): 212-220. |
[3] | 张茜, 王子豪, 田烨. 跨组织线粒体应激信号交流调控机体衰老研究进展[J]. 遗传, 2023, 45(3): 187-197. |
[4] | 黎嘉丽, 李瑾, 汪虎. 衰老相关的蛋白稳态失衡[J]. 遗传, 2022, 44(9): 733-744. |
[5] | 郑鹏飞, 谢海波, 朱盼盼, 赵呈天. 斑马鱼神经底板处神经元的分布及特征[J]. 遗传, 2022, 44(6): 510-520. |
[6] | 吕柯孬, 潘学峰. 人类神经退行性疾病相关的三核苷酸重复DNA序列不稳定性机制研究进展[J]. 遗传, 2021, 43(9): 835-848. |
[7] | 袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
[8] | 刘紫妍, 高艾. 炎性衰老在血液系统疾病中的研究进展[J]. 遗传, 2021, 43(12): 1132-1141. |
[9] | 刘学文, 吴红梅, 白瑛, 曾群, 曹泽民, 吴秀山, 唐旻. 钾离子通道蛋白Shaker对果蝇心脏衰老的保护作用[J]. 遗传, 2021, 43(1): 94-99. |
[10] | 吴安平, 庆宏, 全贞贞. Rab蛋白家族在神经类疾病中的作用[J]. 遗传, 2021, 43(1): 16-29. |
[11] | 刘传明,丁利军,李佳音,戴建武,孙海翔. 衰老导致卵巢功能低下研究进展[J]. 遗传, 2019, 41(9): 816-826. |
[12] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[13] | 阮清伟 俞卓伟 保志军 马永兴. 免疫基因多态性与衰老和增龄相关疾病关系[J]. 遗传, 2013, 35(7): 813-822. |
[14] | 刘强,李虹,陈怀红,王静. 热量限制通过HNF3γ下调NOX4表达来抑制内皮细胞的衰老[J]. 遗传, 2012, 34(5): 573-583. |
[15] | 罗茂,张志明,高健,曾兴,潘光堂. miR319在植物器官发育中的调控作用[J]. 遗传, 2011, 33(11): 1203-1211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: