遗传 ›› 2025, Vol. 47 ›› Issue (8): 861-875.doi: 10.16288/j.yczz.24-335
师愉倩1,2,3(), 马剑峰1,2,3, 陈思宇1,2,3, 周立新4, 薛佳4, 沈林園1,2,3, 朱砺1,2,3(
), 甘麦邻1,2,3(
)
收稿日期:
2024-11-24
修回日期:
2025-03-10
出版日期:
2025-05-12
发布日期:
2025-05-12
通讯作者:
朱砺,教授,博士生导师,研究方向:动物遗传育种与繁殖。E-mail: zhuli@sicau.edu.cn;作者简介:
师愉倩,硕士研究生,专业方向:动物遗传育种与繁殖。E-mail: 2023302150@stu.sicau.edu.cn
基金资助:
Yuqian Shi1,2,3(), Jianfeng Ma1,2,3, Siyu Chen1,2,3, Lixin Zhou4, Jia Xue4, Linyuan Shen1,2,3, Li Zhu1,2,3(
), Mailin Gan1,2,3(
)
Received:
2024-11-24
Revised:
2025-03-10
Published:
2025-05-12
Online:
2025-05-12
Supported by:
摘要:
作为表观遗传的重要研究内容,小非编码RNA (small non-coding RNAs,sncRNAs)在雄性生殖正常发育和代际遗传中发挥着重要的调控作用。研究表明,哺乳动物雄性生殖细胞中高度表达的小非编码RNA包括miRNA、piRNA和tsRNA等,在维持雄性生殖细胞发育和精子发生等过程中发挥重要作用。sncRNAs通过调控基因表达、影响蛋白翻译、改变精子表观遗传修饰等方式参与维持不同阶段的雄性生殖发育过程,其表达异常与雄性不育密切相关。此外,越来越多的证据表明,环境暴露影响精子的表观遗传修饰,这种表观遗传修饰的变化常导致后代表型发生改变。本文系统总结了雄性生殖细胞中sncRNAs的种类及其发挥的功能,介绍了各种因素环境暴露引起的代际遗传中sncRNAs的作用,以期为雄性生殖健康的研究提供新的视角和理论依据,为预防和治疗雄性不育及相关生殖疾病提供潜在的靶点和策略。
师愉倩, 马剑峰, 陈思宇, 周立新, 薛佳, 沈林園, 朱砺, 甘麦邻. 小非编码RNA在雄性生殖发育和代际遗传中研究进展[J]. 遗传, 2025, 47(8): 861-875.
Yuqian Shi, Jianfeng Ma, Siyu Chen, Lixin Zhou, Jia Xue, Linyuan Shen, Li Zhu, Mailin Gan. Progress on small non-coding RNAs in male reproductive development and intergenerational inheritance[J]. Hereditas(Beijing), 2025, 47(8): 861-875.
表1
雄性生殖相关疾病sncRNAs生物标志物"
表型 | 物种 | 样本 类型 | 小非编码RNA | 可能作用靶标和机理 | 参考文献 |
---|---|---|---|---|---|
非梗阻性无精子症 | 人 | 睾丸 | miR-370-3p、miR-10b-3p、miR-539-5p和miR-22-5p上调;miR-34b-5p、miR-516b-5p和miR-122-5p下调 | 通过靶向与精子生成相关的基因,并调控这些基因表达,影响精子发生过程中细胞分化和发育 | [ |
弱精子症 | 人 | 精子 | let-7a、miR-7-1-3p、miR-141、miR-200a和miR-429与精液浓度负相关,miR-15b、miR-34b和miR-122与精液浓度正相关 | miR-141通过靶向SPAG9的3′-UTR,抑制其表达,进而影响精子活力;miR-429通过靶向HSPA4L的3′-UTR抑制其表达,从而影响精子的活力和存活率;miR-15b通过靶向CDC25A的3′-UTR,调节细胞周期进程,促进精子发生 | [ |
不育 | 人 | 精子 | hsa-mir-9-3p、hsa-mir-30b-5p和hsa-mir-122-5p上调 | hsa-miR-122-5p通过靶向ADAM10,阻断Notch信号通路,进而影响细胞的增殖和迁移;在精子发生中,其上调可能通过抑制TNP2的表达,影响精子形成过程中的染色质压缩 | [ |
非梗阻性无精子症 | 人 | 睾丸、 精液 | piR-31704、piR-31843、piR-36659、piR-45048、piR-46102、piR-55522、piR-60351和piR-61927与精液浓度正相关 | 通过靶向调控生殖细胞发育、细胞周期、代谢过程和精子成熟,影响精子生成和精液质量 | [ |
不育 | 人 | 精浆 | hsa-mir-7110、hsa-mir-4800、hsa-mir-4488、hsa-mir-3916和hsa-mir-4508上调 | hsa-mir-7110通过靶向IGF2BP2的3′-UTR,抑制其表达;IGF2BP2在细胞增殖和代谢中起重要作用,其抑制可能导致生殖细胞发育受阻,进而影响精子发生;hsa-mir-4508通过靶向RFX1,抑制其表达,进而影响细胞内的信号传导和基因调控 | [ |
不育 | 人 | 精子 | 15种miRNA的表达上调,5种miRNA表达下调 | miR-130a通过下调AR表达,干扰精子发生;miR-29b-3p下调通过调节TRPV4表达,影响生精细胞凋亡 | [ |
高原生质滴精子 | 猪 | 精浆 | ssc-miR-101、ssc-miR-148a-5p和ssc-miR-184等13种miRNA上调;ssc-miR-1249、ssc-mir-155-5p和ssc-miR-296-5p下调 | ssc-miR-101通过抑制PI3K-AKT信号通路,可能影响细胞凋亡和存活,进而调节精子发生;miR-155-5p通过靶向多种与细胞凋亡和炎症相关的基因,在精子发生中,可能通过类似机制影响生殖细胞的存活和功能 | [ |
精液质量 | 猪 | 精浆 | miR-205和miR-378b-3p在低质量组中上调 | miR-205-5p通过靶向ANGPT2抑制细胞增殖和迁移;在精液中,miR-205-5p的上调可能通过抑制ANGPT2,影响精子发生过程中的细胞功能 | [ |
精液质量 | 猪 | 精浆 | ssc-miR-122-p、ssc-miR-486、ssc-miR-345-p、ssc-miR-362和ssc-miR-500-5p作为预测精子活力的潜在标志物 | miR-122-p可能通过靶向CBL(casitas B-lineage lymphoma)基因,调节精子干细胞(SSCs)的增殖和DNA合成,同时抑制早期凋亡,对精子发生过程中的细胞存活和功能发挥重要作用 | [ |
低繁殖力 | 牛 | 睾丸、 精子 | miR-19a、miR-142和miR-143上调;miR-7d、miR-23a和miR-23b下调 | miR-19a通过靶向CLCA4抑制其表达,在生殖细胞中影响精子发生过程中的细胞功能;miR-23a通过靶向NID2和PPP2R5E,促进细胞增殖和抑制凋亡,进而影响精子发生 | [ |
低繁殖力 | 牛 | 精子 | miR-2385-5p(下调)和miR-98(上调)与牛生育能力显著相关 | miR-98可能通过靶向调控细胞凋亡和信号传导相关基因,影响精子的存活和功能 | [ |
弱精子症 | 人 | 精子 | piR-1207和piR-2107下调 | piR-1207和piR-2107可以共同靶向SEMG1基因的编码序列(CDS区),通过结合SEMG1 mRNA抑制其表达 | [ |
弱精子症 | 人 | 精子 | piR-hsa-32694、piR-hsa-26591、piR-hs-18725和piR-hsa-18586的表达显著上调 | piR-hsa-26591可能靶向CFAP45和BRD2;CFAP45在低活力精子中的表达显著增加,而BRD2在弱精子症患者中的表达显著降低,piR-hsa-26591可能通过沉默这些基因的表达,导致精子活力下降 | [ |
不育 | 人 | 精浆 | piR-28478和piR-1077上调 | piR-1077可能通过靶向与精子成熟或运动相关的基因,影响精子的最终功能 | [ |
非梗阻性无精子症 | 人 | 睾丸 | 1,328个piRNAs差异表达,其中1,322个下调,6个上调 | piRNA的失调通过转座子沉默,破坏基因组稳定性;靶向mRNA调控基因表达导致精子发生过程中关键基因表达异常 | [ |
精液质量 | 猪 | 精子 | piR-ssc-120840、piR-ssc-120840、piR-ssc-117286、piR-ssc-127298、piR-ssc-114575、piR-ssc- 1272746、piR-ssc-887100和piR-ssc-1133701与精子质量显著负相关 | piR-ssc-120840的异常表达可能通过干扰精子发生过程中的基因表达模式,导致精子发生受阻或异常,进而影响精子的质量和数量 | [ |
低繁殖力 | 羊 | 睾丸 | 206个piRNA簇在高繁殖力品种中上调 | piRNA簇在生殖干细胞的维持和分化中发挥重要作用 | [ |
非梗阻性无精子症 | 人 | 精浆 | tRF-Val-AAC-010和tRF-Pro-AGG-003上调 | 通过调控精子发生过程中的基因表达,影响生殖细胞的增殖、分化和成熟,并作为诊断非梗阻性无精子症的潜在生物标志物 | [ |
非梗阻性无精子症 | 人 | 血液 | tRF-Gly-GCC-002与tRF-Glu-CC-005是NOA患者进行睾丸显微提取精子手术的生物标志物 | 通过调控神经内分泌蛋白代谢和发育相关通路中的靶基因,影响精子发生过程 | [ |
低繁殖力 | 牛 | 精子 | tRX-Glu-NNN-3811是预测奶牛生育力的标志物 | 通过调节非编码RNA加工来影响胚胎基因组激活 | [ |
[1] |
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414): 57-74.
pmid: 22955616 |
[2] |
Xiong Q, Zhang Y. Small RNA modifications: regulatory molecules and potential applications. J Hematol Oncol, 2023, 16(1): 64.
pmid: 37349851 |
[3] |
Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun FY, Song LN, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science, 2016, 351(6271): 391-396.
pmid: 26721685 |
[4] |
Zhang W, Zhang YN, Zhao MJ, Ding N, Yan L, Chen J, Gao LN, Zhang GZ, Sun XZ, Gu YQ, Liu ML. MicroRNA expression profiles in the seminal plasma of nonobstructive azoospermia patients with different histopathologic patterns. Fertil Steril, 2021, 115(5): 1197-1211.
pmid: 33602558 |
[5] |
Almstrup K. Small RNAs in andrology: small messengers with large perspectives. Andrology, 2023, 11(4): 625-627.
pmid: 37005864 |
[6] |
Sharma U, Rando OJ. Metabolic inputs into the epigenome. Cell Metab, 2017, 25(3): 544-558.
pmid: 28273477 |
[7] |
Burki T. 2024 Nobel Prize awarded for work on microRNAs. Lancet, 2024, 404(10462): 1507-1508.
pmid: 39427667 |
[8] |
Shang RF, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet, 2023, 24(12): 816-833.
pmid: 37380761 |
[9] |
Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T. The small RNA profile during Drosophila melanogaster development. Dev Cell, 2003, 5(2): 337-350.
pmid: 12919683 |
[10] |
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ. Discrete small RNA- generating loci as master regulators of transposon activity in Drosophila. Cell, 2007, 128(6): 1089-1103.
pmid: 17346786 |
[11] |
Qi HY, Watanabe T, Ku HY, Liu N, Zhong M, Lin HF. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. J Biol Chem, 2011, 286(5): 3789-3797.
pmid: 21106531 |
[12] |
Olivieri D, Senti KA, Subramanian S, Sachidanandam R, Brennecke J. The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Mol Cell, 2012, 47(6): 954-969.
pmid: 22902557 |
[13] |
Ding DQ, Chen C. Zucchini: the key ingredient to unveil piRNA precursor processing†. Biol Reprod, 2020, 103(3): 452-454.
pmid: 32524138 |
[14] |
Liang YM, Ji D, Ying XL, Ma RQ, Ji WD. tsRNA modifications: an emerging layer of biological regulation in disease. J Adv Res, 2024, doi: 10.1016/j.jare.2024.09.010.
pmid: 39260796 |
[15] |
Li NS, Yao SQ, Yu GJ, Lu LG, Wang ZH. tRFtarget 2.0: expanding the targetome landscape of transfer RNA- derived fragments. Nucleic Acids Res, 2024, 52(D1): D345-D350.
pmid: 37811890 |
[16] |
Wang MJ, Guo JF, Chen W, Wang H, Hou XT. Emerging roles of tRNA-derived small RNAs in injuries. Peer J, 2024, 12: e18348.
pmid: 39465146 |
[17] |
Hill PWS, Leitch HG, Requena CE, Sun ZY, Amouroux R, Roman-Trufero M, Borkowska M, Terragni J, Vaisvila R, Linnett S, Bagci H, Dharmalingham G, Haberle V, Lenhard B, Zheng Y, Pradhan S, Hajkova P. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature, 2018, 555(7696): 392-396.
pmid: 29513657 |
[18] |
Aliberti P, Sethi R, Belgorosky A, Chandran UR, Plant TM, Walker WH. Gonadotrophin-mediated miRNA expression in testis at onset of puberty in rhesus monkey: predictions on regulation of thyroid hormone activity and DLK1- DIO3 locus. Mol Hum Reprod, 2019, 25(3): 124-136.
pmid: 30590698 |
[19] |
Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 1990, 346(6281): 240-244.
pmid: 1695712 |
[20] |
Chojnacka K, Zarzycka M, Mruk DD. Biology of the sertoli cell in the fetal, pubertal, and adult mammalian testis. Results Probl Cell Differ, 2016, 58: 225-251.
pmid: 27300181 |
[21] |
Chen Y, Zheng YX, Gao Y, Lin Z, Yang SM, Wang TT, Wang Q, Xie NN, Hua R, Liu MX, Sha JH, Griswold MD, Li JS, Tang FC, Tong MH. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res, 2018, 28(9): 879-896.
pmid: 30061742 |
[22] |
Xu N, Papagiannakopoulos T, Pan GJ, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 2009, 137(4): 647-658.
pmid: 19409607 |
[23] |
Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang FC, Hajkova P, Lao KQ, O’Carroll D, Das PP, Tarakhovsky A, Miska EA, Surani MA. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One, 2008, 3(3): e1738.
pmid: 18320056 |
[24] |
Fernández-Pérez D, Brieño-Enríquez MA, Isoler-Alcaraz J, Larriba E. Del Mazo J. MicroRNA dynamics at the onset of primordial germ and somatic cell sex differentiation during mouse embryonic gonad development. RNA, 2018, 24(3): 287-303.
pmid: 29187591 |
[25] |
Ota H, Ito-Matsuoka Y, Matsui Y. Identification of the X-linked germ cell specific miRNAs (XmiRs) and their functions. PLoS One, 2019, 14(2): e0211739.
pmid: 30707741 |
[26] |
Zhou F, Yuan QQ, Zhang WH, Niu MH, Fu HY, Qiu QQ, Mao GP, Wang H, Wen LP, Wang HX, Lu MJ, Li Z, He ZP. Mir-663a stimulates proliferation and suppresses early apoptosis of human spermatogonial stem cells by targeting NFIX and regulating cell cycle. Mol Ther Nucleic Acids, 2018, 12: 319-336.
pmid: 30195770 |
[27] |
Huang YL, Huang GY, Lv J, Pan LN, Luo X, Shen J. miR-100 promotes the proliferation of spermatogonial stem cells via regulating Stat3. Mol Reprod Dev, 2017, 84(8): 693-701.
pmid: 28569396 |
[28] |
Yang QE, Racicot KE, Kaucher AV, Oatley MJ, Oatley JM. MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells. Development, 2013, 140(2): 280-290.
pmid: 23221369 |
[29] |
Fu HY, Zhou F, Yuan QQ, Zhang WH, Qiu QQ, Yu X, He ZP. miRNA-31-5p mediates the proliferation and apoptosis of human spermatogonial stem cells via targeting JAZF1 and cyclin A2. Mol Ther Nucleic Acids, 2019, 14: 90-100.
pmid: 30583099 |
[30] |
Liu SS, Maguire EM, Bai YS, Huang L, Liu YR, Xu LP, Fauzi I, Zhang SQ, Xiao QZ, Ma NF. A novel regulatory axis, CHD1L-microRNA 486-matrix metalloproteinase 2, controls spermatogonial stem cell properties. Mol Cell Biol, 2019, 39(4): e00357-18.
pmid: 30455250 |
[31] |
Wang ZQ, Wang Y, Zhou T, Chen S, Morris D, Magalhães RDM, Li MS, Wang S, Wang HT, Xie YM, McSwiggin H, Oliver D, Yuan SQ, Zheng HL, Mohammed J, Lai EC, McCarrey JR, Yan W. The rapidly evolving X-linked MIR-506 family fine-tunes spermatogenesis to enhance sperm competition. eLife, 2024, 13: RP90203.
pmid: 38639482 |
[32] |
McIver SC, Stanger SJ, Santarelli DM, Roman SD, Nixon B, McLaughlin EA. A unique combination of male germ cell miRNAs coordinates gonocyte differentiation. PLoS One, 2012, 7(4): e35553.
pmid: 22536405 |
[33] |
Wang L, Xu C. Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Reproduction, 2015, 149(3): R127-R137.
pmid: 25352684 |
[34] |
Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard MH, Durand P, Samarut J, Pain B, Rouault JP. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA, 2010, 16(4): 720-731.
pmid: 20150330 |
[35] |
Wu JW, Bao JQ, Kim M, Yuan SQ, Tang C, Zheng HL, Mastick GS, Xu C, Yan W. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci USA, 2014, 111(28): E2851-E2857.
pmid: 24982181 |
[36] |
Kawamura Y, Saito K, Kin T, Ono Y, Asai K, Sunohara T, Okada TN, Siomi MC, Siomi H. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature, 2008, 453(7196): 793-797.
pmid: 18463636 |
[37] |
Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell, 2007, 12(4): 503-514.
pmid: 17395546 |
[38] |
Dai P, Wang X, Gou LT, Li ZT, Wen Z, Chen ZG, Hua MM, Zhong A, Wang LB, Su HY, Wan HD, Qian K, Liao LJ, Li JS, Tian B, Li DS, Fu XD, Shi HJ, Zhou Y, Liu MF. A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell, 2019, 179(7): 1566-1581.e16.
pmid: 31835033 |
[39] |
Wang X, Gou LT, Liu MF. Noncanonical functions of PIWIL1/piRNAs in animal male germ cells and human diseases†. Biol Reprod, 2022, 107(1): 101-108.
pmid: 35403682 |
[40] |
Singh A, Rappolee DA, Ruden DM. Epigenetic reprogramming in mice and humans: from fertilization to primordial germ cell development. Cells, 2023, 12(14): 1874.
pmid: 37508536 |
[41] |
Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet, 2019, 20(2): 89-108.
pmid: 30446728 |
[42] |
Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science, 2007, 316(5825): 744-747.
pmid: 17446352 |
[43] |
Li XZG, Roy CK, Dong XJ, Bolcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng ZP, Zamore PD. An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell, 2013, 50(1): 67-81.
pmid: 23523368 |
[44] |
Wenda JM, Homolka D, Yang ZL, Spinelli P, Sachidanandam R, Pandey RR, Pillai RS. Distinct roles of RNA helicases MVH and TDRD9 in PIWI slicing-triggered mammalian piRNA biogenesis and function. Dev Cell, 2017, 41(6): 623-637.e9.
pmid: 28633017 |
[45] |
Tan K, Kim ME, Song HW, Skarbrevik D, Babajanian E, Bedrosian TA, Gage FH, Wilkinson MF. The Rhox gene cluster suppresses germline LINE1 transposition. Proc Natl Acad Sci USA, 2021, 118(23): e2024785118.
pmid: 34083437 |
[46] |
Wang XX, Jiang C, Fu BY, Zhu RL, Diao F, Xu N, Chen Z, Tao WW, Li CJ. MILI, a PIWI family protein, inhibits melanoma cell migration through methylation of LINE1. Biochem Biophys Res Commun, 2015, 457(4): 514-519.
pmid: 25582775 |
[47] |
Barrachina F, Battistone MA, Castillo J, Mallofré C, Jodar M, Breton S, Oliva R. Sperm acquire epididymis-derived proteins through epididymosomes. Hum Reprod, 2022, 37(4): 651-668.
pmid: 35137089 |
[48] |
Zhang P, Kang JY, Gou LT, Wang JJ, Xue YC, Skogerboe G, Dai P, Huang DW, Chen RS, Fu XD, Liu MF, He SM. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res, 2015, 25(2): 193-207.
pmid: 25582079 |
[49] |
Wei H, Gao J, Lin DH, Geng RR, Liao JY, Huang TY, Shang GY, Jing JJ, Fan ZW, Pan D, Yin ZQ, Li TM, Liu XY, Zhao S, Chen C, Li JS, Wang X, Ding DQ, Liu MF. piRNA loading triggers MIWI translocation from the intermitochondrial cement to chromatoid body during mouse spermatogenesis. Nat Commun, 2024, 15(1): 2343.
pmid: 38491008 |
[50] |
Peng HY, Shi JC, Zhang Y, Zhang H, Liao SY, Li W, Lei L, Han CS, Ning LN, Cao YJ, Zhou Q, Chen Q, Duan EK. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res, 2012, 22(11): 1609-1612.
pmid: 23044802 |
[51] |
Chen Q, Yan MH, Cao ZH, Li X, Zhang YF, Shi JC, Feng GH, Peng HY, Zhang XD, Zhang Y, Qian JJ, Duan EK, Zhai QW, Zhou Q. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science, 2016, 351(6271): 397-400.
pmid: 26721680 |
[52] |
Nixon B, De Iuliis GN, Dun MD, Zhou W, Trigg NA, Eamens AL. Profiling of epididymal small non-protein- coding RNAs. Andrology, 2019, 7(5): 669-680.
pmid: 31020794 |
[53] |
Kim HK, Yeom JH, Kay MA. Transfer RNA-derived small RNAs: another layer of gene regulation and novel targets for disease therapeutics. Mol Ther, 2020, 28(11): 2340-2357.
pmid: 32956625 |
[54] |
Chen XX, Sun Q, Zheng Y, Liu ZD, Meng XX, Zeng WX, Lu HZ. Human sperm tsRNA as potential biomarker and therapy target for male fertility. Reproduction, 2021, 161(2): 111-122.
pmid: 33434159 |
[55] |
Zhang HT, Zhang Z, Hong K, Tang WH, Liu DF, Mao JM, Yang YZ, Lin HC, Jiang H. Altered microRNA profiles of testicular biopsies from patients with nonobstructive azoospermia. Asian J Androl, 2020, 22(1): 100-105.
pmid: 31134916 |
[56] |
Mokánszki A, Molnár Z, Varga Tóthné E, Bodnár B, Jakab A, Bálint BL, Balogh I. Altered microRNAs expression levels of sperm and seminal plasma in patients with infertile ejaculates compared with normozoospermic males. Hum Fertil (Camb), 2020, 23(4): 246-255.
pmid: 30632823 |
[57] |
Joshi M, Andrabi SW, Yadav RK, Sankhwar SN, Gupta G, Rajender S. Qualitative and quantitative assessment of sperm miRNAs identifies hsa-miR-9-3p, hsa-miR-30b-5p and hsa-miR-122-5p as potential biomarkers of male infertility and sperm quality. Reprod Biol Endocrinol, 2022, 20(1): 122.
pmid: 35971175 |
[58] |
Chen HC, Xie Y, Li YQ, Zhang C, Lv LY, Yao JH, Deng CH, Sun XZ, Zou XN, Liu GH. Outcome prediction of microdissection testicular sperm extraction based on extracellular vesicles piRNAs. J Assist Reprod Genet, 2021, 38(6): 1429-1439.
pmid: 33686546 |
[59] |
Oluwayiose OA, Houle E, Whitcomb BW, Suvorov A, Rahil T, Sites CK, Krawetz SA, Visconti P, Pilsner JR. Altered non-coding RNA profiles of seminal plasma extracellular vesicles of men with poor semen quality undergoing in vitro fertilization treatment. Andrology, 2023, 11(4): 677-686.
pmid: 36111950 |
[60] |
Abu-Halima M, Fischer U, Al Smadi MA, Ludwig N, Acheli A, Engel A, Abdul-Khaliq H, Meese E. Single sperm RNA signatures reveal microRNA biomarkers for male subfertility. J Assist Reprod Genet, 2024, 41(11): 3119-3132.
pmid: 39312032 |
[61] |
Sun JS, Zhao YX, He J, Zhou QB, El-Ashram S, Yuan S, Chi SH, Qin JL, Huang ZY, Ye MQ, Huang SJ, Li ZL. Small RNA expression patterns in seminal plasma exosomes isolated from semen containing spermatozoa with cytoplasmic droplets versus regular exosomes in boar semen. Theriogenology, 2021, 176: 233-243.
pmid: 34673403 |
[62] |
Dlamini NH, Nguyen T, Gad A, Tesfaye D, Liao SF, Willard ST, Ryan PL, Feugang JM. Characterization of extracellular vesicle-coupled miRNA profiles in seminal plasma of boars with divergent semen quality status. Int J Mol Sci, 2023, 24(4): 3194.
pmid: 36834606 |
[63] |
Zhao YX, Qin JL, Sun JS, He J, Sun YM, Yuan RQ, Li ZL. Motility-related microRNAs identified in pig seminal plasma exosomes by high-throughput small RNA sequencing. Theriogenology, 2024, 215: 351-360.
pmid: 38150851 |
[64] |
Pratim Das P, Sultana Begum S, Choudhury M, Medhi D, Paul V, Jyoti Das P. Characterizing miRNA and mse-tsRNA in fertile and subfertile yak bull spermatozoa from Arunachal Pradesh. J Genet, 2020, 99: 88.
pmid: 33361640 |
[65] |
Zhang Y, Labrecque R, Tremblay P, Plessis C, Dufour P, Martin H, Sirard MA. Sperm-borne tsRNAs and miRNAs analysis in relation to dairy cattle fertility. Theriogenology, 2024, 215: 241-248.
pmid: 38100996 |
[66] |
Shen L, Yu C, Wu YQ, Jiang Y, Sun Y, Yao JY, Chen KE, Hong YT. Transcriptomic landscape of GC-2spd(ts) cell in response to the downregulation of piR-1207/2107. Andrologia, 2022, 54(9): e14522.
pmid: 35791046 |
[67] |
He L, Wu XW, Wu RY, Guo P, He WF, Sun WL, Chen H. Seminal plasma piRNA array analysis and identification of possible biomarker piRNAs for the diagnosis of asthenozoospermia. Exp Ther Med, 2022, 23(5): 347.
pmid: 35493429 |
[68] |
Oluwayiose OA, Houle E, Whitcomb BW, Suvorov A, Rahil T, Sites CK, Krawetz SA, Visconti PE, Pilsner JR. Non-coding RNAs from seminal plasma extracellular vesicles and success of live birth among couples undergoing fertility treatment. Front Cell Dev Biol, 2023, 11: 1174211.
pmid: 37427387 |
[69] |
Piryaei F, Mehta P, Mozdarani H, Hamzehlooy F, Barati M, Piryaei Z, Gilani MAS, Alemi M, Singh R. Testicular piRNA analysis identified dysregulated piRNAs in non- obstructive azoospermia. Reprod Sci, 2024, 31(5): 1246-1255.
pmid: 38133767 |
[70] |
Ablondi M, Gòdia M, Rodriguez-Gil JE, Sánchez A, Clop A. Characterisation of sperm piRNAs and their correlation with semen quality traits in swine. Anim Genet, 2021, 52(1): 114-120.
pmid: 33226164 |
[71] |
He XL, Li B, Fu SY, Wang B, Qi YX, Da L, Te R, Sun SZ, Liu YB, Zhang WG. Identification of piRNAs in the testes of sunite and small-tailed Han sheep. Anim Biotechnol, 2021, 32(1): 13-20.
pmid: 31318630 |
[72] |
Han XX, Hao L, Shi ZD, Li Y, Wang L, Li ZB, Zhang Q, Hu FF, Cao YJ, Pang K, Zhu ZB. Seminal plasma extracellular vesicles tRF-Val-AAC-010 can serve as a predictive factor of successful microdissection testicular sperm extraction in patients with non-obstructive azoospermia. Reprod Biol Endocrinol, 2022, 20(1): 106.
pmid: 35869479 |
[73] |
Zhang Q, Liu Z, Han XX, Li Y, Xia T, Zhu Y, Li ZB, Wang L, Hao L, Hu FF, Cao YJ, Han CH, Zhu ZB. Circulatory exosomal tRF-Glu-CTC-005 and tRF-Gly-GCC-002 serve as predictive factors of successful microdissection testicular sperm extraction in patients with nonobstructive azoospermia. Fertil Steril, 2022, 117(3): 512-521.
pmid: 34955241 |
[74] |
de Castro Barbosa T, Ingerslev LR, Alm PS, Versteyhe S, Massart J, Rasmussen M, Donkin I, Sjögren R, Mudry JM, Vetterli L, Gupta S, Krook A, Zierath JR, Barrès R. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab, 2016, 5(3): 184-197.
pmid: 26977389 |
[75] |
Fontelles CC, Guido LN, Rosim MP, de Oliveira Andrade F, Jin L, Inchauspe J, Pires VC, de Castro IA, Hilakivi- Clarke L, de Assis S, Ong TP. Paternal programming of breast cancer risk in daughters in a rat model: opposing effects of animal- and plant-based high-fat diets. Breast Cancer Res, 2016, 18(1): 71.
pmid: 27456846 |
[76] |
Grandjean V, Fourré S, De Abreu DAF, Derieppe MA, Remy JJ, Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep, 2015, 5: 18193.
pmid: 26658372 |
[77] |
Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci, 2013, 33(21): 9003-9012.
pmid: 23699511 |
[78] |
Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA, 2015, 112(44): 13699-13704.
pmid: 26483456 |
[79] |
Short AK, Fennell KA, Perreau VM, Fox A, O’Bryan MK, Kim JH, Bredy TW, Pang TY, Hannan AJ. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl Psychiatry, 2016, 6(6): e837.
pmid: 27300263 |
[80] |
Zeid D, Gould TJ. Chronic nicotine exposure alters sperm small RNA content in C57BL/6J mouse model. Dev Psychobiol, 2023, 65(2): e22367.
pmid: 36811365 |
[81] |
Roach AN, Bhadsavle SS, Higgins SL, Derrico DD, Basel A, Thomas KN, Golding MC. Alterations in sperm RNAs persist after alcohol cessation and correlate with epididymal mitochondrial dysfunction. Andrology, 2024, 12(5): 1012-1023.
pmid: 38044754 |
[82] |
Chen MJ, Xu YY, Wang WJ, Wang XK, Qiu LL, Chen SF, Kan HD, Ying ZK. Paternal exposure to PM2.5 programs offspring’s energy homeostasis. Environ Sci Technol, 2021, 55(9): 6097-6106.
pmid: 33825453 |
[83] |
Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie YM, Tang C, Yan W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin, 2018, 11(1): 8.
pmid: 29482626 |
[84] |
Kleeman EA, Reisinger SN, Adithya P, Houston B, Stathatos G, Garnham AL, McLaughlin S, O’Bryan MK, Gubert C, Hannan AJ. Paternal immune activation by Poly I:C modulates sperm noncoding RNA profiles and causes transgenerational changes in offspring behavior. Brain Behav Immun, 2024, 115: 258-279.
pmid: 37820975 |
[85] |
Masson BA, Kiridena P, Lu D, Kleeman EA, Reisinger SN, Qin W, Davies WJ, Muralitharan RR, Jama HA, Antonacci S, Marques FZ, Gubert C, Hannan AJ. Depletion of the paternal gut microbiome alters sperm small RNAs and impacts offspring physiology and behavior in mice. Brain Behav Immun, 2024, 123: 290-305.
pmid: 39293692 |
[86] |
Meng XN, Zhang L, Hou JW, Ma T, Pan C, Zhou Y, Han RT, Ding YZ, Peng HR, Xiang Z, Li DM, Han XD. The mechanisms in the altered ontogenetic development and lung-related pathology in microcystin-leucine arginine (MC-LR)-paternal-exposed offspring mice. Sci Total Environ, 2020, 736: 139678.
pmid: 32479959 |
[87] |
Morgan HL, Furse S, Dias IHK, Shabir K, Castellanos M, Khan I, May ST, Holmes N, Carlile M, Sang F, Wright V, Koulman A, Watkins AJ. Paternal low protein diet perturbs inter-generational metabolic homeostasis in a tissue- specific manner in mice. Commun Biol, 2022, 5(1): 929.
pmid: 36075960 |
[88] |
Boskovic A, Bing XY, Kaymak E, Rando OJ. Control of noncoding RNA production and histone levels by a 5′ tRNA fragment. Genes Dev, 2020, 34(1-2): 118-131.
pmid: 31831626 |
[89] |
Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet, 2018, 19(2): 81-92.
pmid: 29033456 |
[90] |
Zhang YF, Zhang XD, Shi JC, Tuorto F, Li X, Liu YS, Liebers R, Zhang LW, Qu YC, Qian JJ, Pahima M, Liu Y, Yan MH, Cao ZH, Lei XH, Cao YJ, Peng HY, Liu SC, Wang Y, Zheng HL, Woolsey R, Quilici D, Zhai QW, Li L, Zhou T, Yan W, Lyko F, Zhang Y, Zhou Q, Duan E, Chen Q. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol, 2018, 20(5): 535-540.
pmid: 29695786 |
[91] |
Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, Frye M, Helm M, Stoecklin G, Lyko F. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol, 2012, 19(9): 900-905.
pmid: 22885326 |
[92] |
Rompala GR, Simons A, Kihle B, Homanics GE. Paternal preconception chronic variable stress confers attenuated ethanol drinking behavior selectively to male offspring in a pre-stress environment dependent manner. Front Behav Neurosci, 2018, 12: 257.
pmid: 30450042 |
[93] |
Tomar A, Gomez-Velazquez M, Gerlini R, Comas- Armangué G, Makharadze L, Kolbe T, Boersma A, Dahlhoff M, Burgstaller JP, Lassi M, Darr J, Toppari J, Virtanen H, Kuhnapfel A, Scholz M, Landgraf K, Kiess W, Vogel M, Gailus-Durner V, Fuchs H, Marschall S, de Angelis MH, Kotaja N, Körner A, Teperino R. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs. Nature, 2024, 630(8017): 720-727.
pmid: 38839949 |
[94] |
Guo Y, Bai DD, Liu WQ, Liu YD, Zhang YL, Kou XC, Chen JY, Wang H, Teng XM, Zuo J, Gao SR. Altered sperm tsRNAs in aged male contribute to anxiety-like behavior in offspring. Aging Cell, 2021, 20(9): e13466.
pmid: 34448534 |
[95] |
Zhang YW, Ren L, Sun XX, Zhang ZL, Liu J, Xin YN, Yu JM, Jia YM, Sheng JH, Hu GF, Zhao RQ, He B. Angiogenin mediates paternal inflammation-induced metabolic disorders in offspring through sperm tsRNAs. Nat Commun, 2021, 12(1): 6673.
pmid: 34845238 |
[96] |
Shen LY, Gan ML, Tan ZD, Jiang DM, Jiang YZ, Li MZ, Wang JY, Li XW, Zhang SH, Zhu L. A novel class of tRNA-derived small non-Coding RNAs respond to myocardial hypertrophy and contribute to intergenerational inheritance. Biomolecules, 2018, 8(3): 54.
pmid: 30012983 |
[97] |
Liu JW, Shi JC, Hernandez R, Li XC, Konchadi P, Miyake Y, Chen Q, Zhou T, Zhou CC. Paternal phthalate exposure-elicited offspring metabolic disorders are associated with altered sperm small RNAs in mice. Environ Int, 2023, 172: 107769.
pmid: 36709676 |
[1] | 张星雨, 祝天喻, 张清荣, 郭雪江, 王铖, 靳光付, 胡志斌. 精子发生障碍的遗传学研究进展[J]. 遗传, 2021, 43(5): 473-486. |
[2] | 袁露, 葛婷婷, 牛长敏, 徐文华, 郑英. 精子变形过程中组蛋白-鱼精蛋白替换调控机制[J]. 遗传, 2021, 43(12): 1121-1131. |
[3] | 赵鑫,杨化强. 大动物精原干细胞研究进展[J]. 遗传, 2019, 41(8): 686-702. |
[4] | 袁志恒,赵艳梅. piRNA/PIWI功能调控与精子发生[J]. 遗传, 2017, 39(8): 683-691. |
[5] | 董莲花, 冉茂良, 李智, 彭馥芝, 陈斌. 泛素-蛋白酶体途径在精子生成中的作用[J]. 遗传, 2016, 38(9): 791-800. |
[6] | 张朝晖, 康现江, 穆淑梅. 组蛋白磷酸化修饰与精子发生[J]. 遗传, 2014, 36(3): 220-227. |
[7] | 葛少钦,李建忠,张晓静. 精子发生过程中组蛋白甲基化和乙酰化[J]. 遗传, 2011, 33(9): 939-946. |
[8] | 张秀军,刘美玲,贾孟春. 精子发生过程中基因表达转录水平的调控[J]. 遗传, 2011, 33(12): 1300-1307. |
[9] | 孟雅楠,孟丽军,宋亚娟,刘美玲,张秀军. 小RNA分子与精子发生调控[J]. 遗传, 2011, 33(1): 9-16. |
[10] | 汪斌,刘志宇,苗龙. 秀丽线虫精子发生和精子受精的研究进展[J]. 遗传, 2008, 30(6): 677-686. |
[11] | 郭艳合,刘立,蔡荣,钱程. 小RNA家族的新成员—piRNA[J]. 遗传, 2008, 30(1): 28-34. |
[12] | 葛少钦,康现江,刘桂荣,穆淑梅. 精子发生过程中的相关基因[J]. 遗传, 2008, 30(1): 3-12. |
[13] | 邢晓为,李麓芸,卢光琇. SRG4在出生后小鼠睾丸及隐睾中的表达特性[J]. 遗传, 2007, 29(6): 699-704. |
[14] | 陈云贵,宋平,吕道远,周伟,桂建芳. Le 斑马鱼nanos1基因在配子发生中的原位杂交研究[J]. 遗传, 2005, 27(4): 589-574. |
[15] | 邱为民,张思仲,武辉,张戈,肖翠英. 一种新的cDNA 末端快速扩增获取全长cDNA的方法[J]. 遗传, 2001, 23(5): 480-481. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: