遗传 ›› 2014, Vol. 36 ›› Issue (1): 30-40.doi: 10.3724/SP.J.1005.2014.00030
霍桂桃, 吕建军, 屈哲, 林志, 张頔, 杨艳伟, 李波
收稿日期:
2013-06-26
修回日期:
2013-10-21
出版日期:
2014-01-20
发布日期:
2013-12-20
通讯作者:
李波, 教授, 博士生导师, 研究方向:临床前药物安全性评价。E-mail: libo@nifdc.org.cn
E-mail:libo@nifdc.org.cn
作者简介:
霍桂桃, 博士, 助理研究员, 研究方向:分子遗传学及药物安全性评价毒性病理学诊断。E-mail: huoguitao@nifdc.org.cn
吕建军, 博士, 副主任药师, 研究方向:分子遗传学、分子病理学及药物安全性评价毒性病理学诊断。E-mail: lujianjun@nifdc.org.cn
霍桂桃和吕建军同为第一作者。
基金资助:
科技部“十二五”重大新药创制专项(编号2012ZX09302001)资助
Guitao Huo, Jianjun Lu, Zhe Qu, Zhi Lin, Di Zhang, Yanwei Yang, Bo Li
Received:
2013-06-26
Revised:
2013-10-21
Online:
2014-01-20
Published:
2013-12-20
摘要:
果蝇作为研究人类疾病的模式生物, 与哺乳动物不仅在基本的生物学、生理学和神经系统机能等方面比较相似, 而且果蝇有其作为模式生物的独特优势。近年来的研究表明, 果蝇和人类在肿瘤发生信号通路等方面的保守性很高, 而且果蝇具有很强的遗传学可操作性, 是肿瘤学研究有效的模型之一, 可用于研究人类肿瘤发生、发展、转移等分子机制。文章综述了果蝇在肿瘤学研究中的优势、已建立的用于研究特定癌症的果蝇模型, 并对其在未来肿瘤学的研究方向进行展望, 以期为国内肿瘤学研究和抗肿瘤药物的研发提供参考。
霍桂桃, 吕建军, 屈哲, 林志, 张頔, 杨艳伟, 李波. 果蝇在肿瘤学研究中的优势及应用前景[J]. 遗传, 2014, 36(1): 30-40.
Guitao Huo, Jianjun Lu, Zhe Qu, Zhi Lin, Di Zhang, Yanwei Yang, Bo Li. The applications and advantages of Drosophila melanogaster in cancer research[J]. HEREDITAS, 2014, 36(1): 30-40.
[1] Moloney A, Sattelle DB, Lomas DA, Crowther DC. Alz-heimer’s disease: insights from Drosophila melanogaster models. Trends in Biochemical Sciences, 2009, 35(4): 228–235. <\p> [2] Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature, 2000, 404(6776): 394–398. <\p> [3] Wolfgang WJ, Miller TW, Webster JM, Huston JS, Thompson LM, Marsh JL, Messer A. Suppression of Hun-tington’s disease pathology in Drosophila by human sin-gle-chain Fv antibodies. Proc Natl Acad Sci USA, 2005, 102(32): 11563–11568. <\p> [4] Thackray AM, Muhammad F, Zhang C, Di Y, Jahn TR, Landgraf M, Crowther DC, Evers JF, Bujdoso R. Ovine PrP transgenic Drosophila show reduced locomotor acti¬vity and decreased survival. Biochem J, 2012, 444(3): 487– 495. <\p> [5] St Johnston D. The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet, 2002, 3(3): 176–188. <\p> [6] Pandey UB, Nichols CD. Human disease models in Dro-sophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev, 2011, 63(2): 411–436. <\p> [7] Satta R, Dimitrijevic N, Manev H. Drosophila metabolize 1, 4-butanediol into gamma-hydroxybutyric acid in vivo. Eur J Pharmacol, 2003, 473(2?3): 149–152. <\p> [8] Wolf FW, Heberlein U. Invertebrate models of drug abuse. J Neurobiol, 2003, 54(1): 161–178. <\p> [9] Andretic R, Kim YC, Jones FS, Han KA, Greenspan RJ. Drosophila D1 dopamine receptor mediates caffeine- induced arousal. Proc Natl Acad Sci USA, 2008, 105(51): 20392–20397. <\p> [10] Lloyd TE, Taylor JP. Flightless flies: Drosophila models of neuromuscular disease. Ann NY Acad Sci, 2010, 1184: e1–e20. <\p> [11] Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human disease-associated gene se-quences in Drosophila melanogaster. Genome Res, 2001, 11(6): 1114–1125. <\p> [12] Wassarman DA, Therrien M, Rubin GM. The Ras signaling pathway in Drosophila. Curr Opin Genet Dev, 1995, 5(1): 44–50. <\p> [13] Oro AE, Higgins KM, Hu ZL, Bonifas JM, Epstein EH Jr, Scott MP. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science, 1997, 276(5313): 817–821. <\p> [14] Dahmane N, Lee J, Robins P, Heller P, Ruizi AA. Activation of the transcription factor Gli1 and the sonic hedgehog signalling pathway in skin tumours. Nature, 1997, 389(6653): 876–881. <\p> [15] Gonzalez C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer, 2013, 13(3): 172–183. <\p> [16] Ranganathan P, Weaver KL, Capobianco AJ. Notch signaling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer, 2011, 11(5): 338–351. <\p> [17] Espinoza I, Pochampally R, Xing F, Watabe K, Miele L. Notch signaling: targeting cancer stem cells and epitheli-al-to-mesenchymal transition. Onco Targets Ther, 2013, 6: 1249–1259. <\p> [18] Malinge S, Ben-Abdelali R, Settegrana C, Radford-Weiss I, Debre M, Beldford K, Macintyre EA, Villeval JL, Vainchenker W, Berger R, Bernard OA, Delabesse E, Pe-nard-Lacronique V. Novel activating JAK2 mutation in a patient with Down syndrome and B-cell Precursor acute lymphoblastic leukemia. Blood, 2007, 109(5): 2202–2204. <\p> [19] Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J, 1995, 14(12): 2857–2865. <\p> [20] Vainchenker W, Dusa A, Constantinescu SN. JAKs in pa-thology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin Cell Dev Biol, 2008, 19(4): 385–393. <\p> [21] Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev, 2007, 17(1): 45–51. <\p> [22] Logan CY, Nusse R. The Wnt signaling pathway in de-velopment and disease. Annu Rev Cell Dev Biol, 2004, 20: 781–810. <\p> [23] Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer, 2008, 8(5): 387–398. <\p> [24] Prestwich TC, Macdougald OA. Wnt/β-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol, 2007, 19(6): 612–617. <\p> [25] Yamashita YM, Jones DL, Fuller MT. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science, 2003, 301(5639): 1547– 1550. <\p> [26] Roberts DM, Pronobis MI, Poulton JS, Kane EG, Peifer M. Regulation of Wnt signaling by the tumor suppressor adenomatous polyposis coli does not require the ability to enter the nucleus or a particular cytoplasmic localization. Mol Biol Cell, 2012, 23(11): 2041–2056. <\p> [27] Takacs CM, Baird JR, Hughes EG, Kent SS, Benchabane H, Paik R, Ahmed Y. Dual positive and negative regulation of wingless signaling by adenomatous polyposis coli. Science, 2008, 319(5861): 333–336. <\p> [28] Cheng LY, Bailey AP, Leevers SJ, Ragan RJ, Driscoll PC, Gould AP. Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell, 2011, 146(3): 435–447. <\p> [29] Zhao B, Li L, Lei QY, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev, 2010, 24(9): 862–874. <\p> [30] Kasai Y, Cagan R. Drosophila as a tool for personalized medicine: a primer. Per Med, 2010, 7(6): 621–632. <\p> [31] Asha H, Nagy I, Kovacs G, Stetson D, Ando I, Dearolf CR. Analysis of ras-induced overproliferation in drosophila hemocytes. Genetics, 2003, 163(1): 203–215. <\p> [32] Miller M, Ginalski K, Lesyng B, Nakaigawa N, Schmidt L, Zbar B. Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET pro-to-oncogene: modeling studies. Proteins, 2001, 44(1): 32– 43. <\p> [33] Bell AJ, Aean MJ, Dockendorff TC. Flies as the ointment: Drosophila modeling to enhance drug discovery. Fly (Austin), 2009, 3(1): 39–49. <\p> [34] Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development, 1993, 117(4): 1223–1237. <\p> [35] Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science, 2003, 302(5648): 1227– 1231. <\p> [36] Leong GR, Goulding KR, Amin N, Richardson HE, Brumby AM. Scribble mutants promote aPKC and JNK- dependent epithelial neoplasia independently of Crumbs. BMC Biol, 2009, 7: 62. <\p> [37] Martin-Belmonte F, Perez-Moreno M. Epithelial cell po-larity, stem cells and cancer. Nat Rev Cancer, 2012, 12(1): 23–38. <\p> [38] Igaki T, Pagliarini RA, Xu T. Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol, 2006, 16(11): 1139–1146. <\p> [39] Kim K, Lee YS, Harris D, Nakahara K, Carthew RW. The RNAi pathway initiated by Dicer-2 in Drosophila. Cold Spring Harb Symp Quant Biol, 2006, 71: 39–44. <\p> [40] Mohr SE, Perrimon N. RNAi screening: new approaches, understandings, and organisms. Wiley Interdiscip Rev RNA, 2012, 3(2): 145–158. <\p> [41] Kuttenkeuler D, Boutros M. Genome-wide RNAi as a route to gene function in Drosophila. Brief Funct Genomic Proteomic, 2004, 3(2): 168–176. <\p> [42] Dasgupta R, Perrimon N. Using RNAi to catch Drosophila genes in a web of interactions: insights into cancer research. Oncogene, 2004, 23(51): 8359–8365. <\p> [43] Miles WO, Dyson NJ, Walker JA. Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech, 2011, 4(6): 753–761. <\p> [44] Willecke M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao CY, Zhang XW, Halder G. The fat Cadherin acts through the Hippo tumor-suppressor pathway to regulate tissue size. Curr Biol, 2006, 16(21): 2090–2100. <\p> [45] Neumüller RA, Richter C, Fischer A, Novatchkova M, Neumüller KG, Knoblich JA. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell, 2011, 8(5): 580–593. <\p> [46] Read RD, Fenton TR, Gomez GG, Wykosky J, Vandenberg SR, Babic I, Iwanami A, Yang HJ, Cavenee WK, Mischel PS, Furnari FB, Thomas JB. A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma. PLoS Genet, 2013, 9: e1003253. <\p> [47] Cabrera CV, Alonso MC, Johnston P, Phillips RG, Lawrence PA. Phenocopies induced with antisense RNA identify the wingless gene. Cell, 1987, 50(4): 659–663. <\p> [48] Quintás-Cardama A, Cortes J. Molecular biology of bcr- abl1-positive chronic myeloid leukemia. Blood, 2009. 113(8): 1619–1630. <\p> [49] Ren RB. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer, 2005, 5(3): 172–183. <\p> [50] Fogerty FJ, Juang JL, Petersen J, Clark MJ, Hoffmann FM, Mosher DF. Dominant effects of the bcr-abl oncogene on Drosophila morphogenesis. Oncogene, 1999, 18(1): 219–232. <\p> [51] Stevens TL, Rogers EM, Koontz LM, Fox DT, Homem CCF, Nowotarski SH, Artabazon NB, Peifer M. Using Bcr-Abl to examine mechanisms by which abl kinase regulates morphogenesis in Drosophila. Mol Biol Cell, 2008, 19(1): 378–393. <\p> [52] Ziemin-Van Der Poel S, McCabe NR, Gill HJ, Espinosa R 3rd, Patel Y, Harden A, Rubinelli P, Smith SD, LeBeau MM, Rowley JD. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA, 1991, 88(23): 10735–10739. <\p> [53] Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, Ben Abdelali R, Macintyre E, De Braekeleer E, De Braekeleer M, Delabesse E, de Oliveira MP, Cavé H, Clappier E, van Dongen JJ, Balgobind BV, van den Heuvel-Eibrink MM, Beverloo HB, Panzer-Grümayer R, Teigler-Schlegel A, Harbott J, Kjeldsen E, Schnittger S, Koehl U, Gruhn B, Heidenreich O, Chan LC, Yip SF, Krzywinski M, Eckert C, Möricke A, Schrappe M, Alonso CN, Schäfer BW, Krauter J, Lee DA, Zur Stadt U, Te Kronnie G, Sutton R, Izraeli S, Trakhtenbrot L, Lo Nigro L, Tsaur G, Fechina L, Szczepanski T, Strehl S, Ilencikova D, Molkentin M, Burmeister T, Dingermann T, Klingebiel T, Marschalek R. New insights to the MLL recombinome of acute leukemias. Leukemia, 2009, 23(8): 1490–1499. <\p> [54] Muyrers-Chen I, Rozovskaia T, Lee N, Kersey JH, Naka-mura T, Canaani E, Paro R. Expression of leukemic MLL fusion proteins in Drosophila affects cell cycle control and chromosome morphology. Oncogene, 2004, 23(53): 8639– 8648. <\p> [55] Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenko¬ppele GJ, Sanz MA, Sierra J, Tallman MS, Löwenberg B, Bloomfield CD. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European Leuke¬miaNet. Blood, 2010, 115(3): 453–474. <\p> [56] Crozatier M, Vincent A. Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and as-sociated leukaemias. Dis Model Mech, 2011, 4(4): 439– 445. <\p> [57] Niebuhr B, Fischer M, Täger M, Cammenga J, Stocking C. Gatekeeper function of the RUNX1 transcription factor in acute leukemia. Blood Cells Mol Dis, 2008, 40(2): 211– 218. <\p> [58] Ferjoux G, Augé B, Boyer K, Haenlin M, Waltzer L. A GATA/RUNX cis-regulatory module couples Drosophila blood cell commitment and differentiation into crystal cells. Dev Biol, 2007, 305(2): 726–734. <\p> [59] Vidal M, Wells S, Ryan A, Cagan R. ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res, 2005, 65(9): 3538–3541. <\p> [60] Waltzer L, Ferjoux G, Bataillé L, Haenlin M. Cooperation between the GATA and RUNX factors Serpent and Lozenge during Drosophila hematopoiesis. EMBO J, 2003, 22(24): 6516–6525. <\p> [61] Williams JA, Su HS, Bernards A, Field J, Sehgal A. A cir-cadian output in Drosophila mediated by neurofibromato-sis-1 and Ras/MAPK. Science, 2001, 293(5538): 2251– 2256. <\p> [62] Barkan B, Starinsky S, Friedman E, Stein R, Kloog Y. The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. Clin Cancer Res, 2006, 12(18): 5533–5542. <\p> [63] Dankort DL, Wang Z, Blackmore V, Moran MF, Muller WJ. Distinct tyrosine autophosphorylation sites negatively and positively modulate neu-mediated transformation. Mol Cell Biol, 1997, 17(9): 5410–5425. <\p> [64] Settle M, Gordon MD, Nadella M, Dankort D, Muller W, Jacobs JR. Genetic identification of effectors downstream of Neu (ErbB-2) autophosphorylation sites in a Drosophila model. Oncogene, 2003, 22(13): 1916–1926. <\p> [65] Alvarado D, Klein DE, Lemmon MA. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor. Nature, 2009, 461(7261): 287–291. <\p> [66] Caldeira J, Pereira PS, Suriano G, Casares F. Using fruitflies to help understand the molecular mechanisms of human hereditary diffuse gastric cancer. Int J Dev Biol, 2009, 53(8–10): 1557–15561. <\p> [67] Pereira PS, Teixeira A, Pinho S, Ferreire P, Fernandes J, Oliveira C, Seruca R, Suriano G, Casares F. E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Hum Mol Genet, 2006, 15(10): 1704–1712. <\p> [68] Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer, 2006 6(5): 392–401. <\p> [69] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674. <\p> [70] Pietras K, Östman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res, 2010, 316(8): 1324– 1331. <\p> [71] Mocellin S, Nitti D. TNF and cancer: the two sides of the coin. Front Biosci, 2008, 13: 2774–2783. <\p> [72] Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T. In-trinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell, 2009, 16(3): 458–465. <\p> [73] Cordero JB, Macagno JP, Stefanatos RK, Strathdee KE, Cagan RL, Vidal M. Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell, 2010, 18(6): 999–1011. <\p> [74] Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev, 2007, 21(21): 2683–2710. <\p> [75] Read RD, Cavenee WK, Furnari FB, Thomas JB. A dro-sophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet, 2009, 5: e1000374. <\p> [76] Witte HT, Jeibmann A, Klämbt C, Paulus W. Modeling glioma growth and invasion in Drosophila melanogaster. Neoplasia, 2009, 11(9): 882–888. <\p> [77] Charytonowicz E, Cordon-Cardo C, Matushansky I, Ziman M. Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell? Cancer Lett, 2009, 279(9): 126– 136. <\p> [78] Keller C, Hansen MS, Coffin CM, Capecchi MR. Pax3: Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev, 2004, 18(21): 2608–2613. <\p> [79] Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR. Alveolar rhabdomyosarcomas in conditional Pax3: Fkhr mice: cooperativity of Ink4a/ ARF and Trp53 loss of function. Genes Dev, 2004, 18(21): 2614–2626. <\p> [80] Maqbool T, Jagla K. Genetic control of muscle develop-ment: learning from Drosophila. J Muscle Res Cell Motil, 2007, 28(7–8): 397–407. <\p> [81] Galindo RL, Allport JA, Olson EN. A Drosophila model of the rhabdomyosarcoma initiator PAX7–FKHR. Proc Natl Acad Sci USA, 2006, 103(36): 13439–13444. <\p> [82] Peczkowska M, Januszewicz A. Multiple endocrine neop-lasia type 2. Familial Cancer, 2005, 4(1): 25–36. <\p> [83] Falchetti A, Marini F, Luzi E, Tonelli F, Brandi ML. Multiple endocrine neoplasms. Best Pract Res Clin Rheu-matol, 2008, 22(1): 149–163. <\p> [84] Hahn M, Bishop J. Expression pattern of Drosophila ret suggests a common ancestral origin between the metamor-phosis precursors in insect endoderm and the vertebrate enteric neurons. Proc Natl Acad Sci USA, 2001, 98(3): 1053–1058. <\p> [85] Read RD, Goodfellow PJ, Mardis ER, Novak N, Armstrong JR, Cagan RL. A Drosophila model of multiple endo¬crine neoplasia type 2. Genetics, 2005, 171(3): 1057– 1081.<\p> |
[1] | 王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
[2] | 程香荣,胡兴琳,姜琦,黄星卫,王楠,雷蕾. 核糖体DNA转录的表观调控与肿瘤发生[J]. 遗传, 2019, 41(3): 185-192. |
[3] | 李鑫,李梦玮,张依楠,徐寒梅. 常用肿瘤基因分析方法及基于TCGA数据库的分析应用[J]. 遗传, 2019, 41(3): 234-242. |
[4] | 吴保军,王卓,董宇,邓宇亮,施奇惠. 肺癌恶性胸腔积液中稀有肿瘤细胞的鉴定与单细胞测序分析[J]. 遗传, 2019, 41(2): 175-184. |
[5] | 王玉杰, 周小坤, 徐丹. 常染色体隐性遗传小头畸形相关蛋白研究进展[J]. 遗传, 2019, 41(10): 905-918. |
[6] | 黄耀强,李国玲,杨化强,吴珍芳. 基因编辑猪在生物医学研究中的应用[J]. 遗传, 2018, 40(8): 632-646. |
[7] | 唐浚博, 曹浩伟, 许蕊, 张丹丹, 黄娟. 果蝇睾丸基因敲除突变体的构建及表型分析[J]. 遗传, 2018, 40(6): 478-487. |
[8] | 何俊,钱长嵩,RichardG.TaitJr.,StewartBauck,吴晓林. SNP芯片数据估计动物个体基因组品种构成的方法及应用[J]. 遗传, 2018, 40(4): 305-314. |
[9] | 孟晓伟, 汪洁, 马晴雯. 唐氏综合征小鼠模型的遗传背景和应用[J]. 遗传, 2018, 40(3): 207-217. |
[10] | 李恩惠,赵欣,张策,刘威. 脆性X智力低下蛋白参与非编码RNA通路的研究进展[J]. 遗传, 2018, 40(2): 87-94. |
[11] | 黎伟, 秦俊, 汪晖, 陈廖斌. 表观遗传生物标志物在人类疾病早期诊治中的研究进展[J]. 遗传, 2018, 40(2): 104-115. |
[12] | 王天工, 叶孟. m 6A甲基化与肿瘤研究进展[J]. 遗传, 2018, 40(12): 1055-1065. |
[13] | 陈一欧, 宝颖, 马华峥, 伊宗裔, 周卓, 魏文胜. 基因编辑技术及其在中国的研究发展[J]. 遗传, 2018, 40(10): 900-915. |
[14] | 孙书国, 吴世安, 张雷. Hippo信号通路在果蝇遗传学研究中的发现与扩展[J]. 遗传, 2017, 39(7): 537-545. |
[15] | 吉新彦, 钟国轩, 赵斌. 哺乳动物Hippo信号通路分子机制研究进展[J]. 遗传, 2017, 39(7): 546-567. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: