[1] | Ren CF, Sun HY, Wang LZ, Zhang GM, Fan YX, Yan GY, Wang D, Wang F . Reprogramming mechanism and genetic stability of induced pluripotent stem cells (iPSCs). Hereditas (Beijing), 2014,36(9):879-887. | [1] | 任才芳, 孙红艳, 王立中, 张国敏, 樊懿萱, 颜光耀, 王丹, 王锋 . iPSCs遗传稳定性与重编程机制的研究进展. 遗传, 2014,36(9):879-887. | [2] | Ji HL, Lu SS, Pan DK . Epigenetic reprogramming by somatic cell nuclear transfer: questions and potential solutions. Hereditas (Beijing), 2014,36(12):1211-1218. | [2] | 纪慧丽, 卢晟盛, 潘登科 . 体细胞核移植后表观遗传重编程的异常及其修复. 遗传, 2014,36(12):1211-1218. | [3] | Franklin SG, Zweidler A . Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature, 1977,266(5599):273-275. | [4] | Allshire RC, Karpen GH . Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet, 2008,9(12):923-937. | [5] | Witt O, Albig W, Doenecke D . Testis-specific expression of a novel human H3 histone gene. Exp Cell Res, 1996,229(2):301-306. | [6] | Wiedemann SM, Mildner SN, B?nisch C, Israel L, Maiser A, Matheisl S, Straub T, Merkl R, Leonhardt H, Kremmer E, Schermelleh L, Hake SB . Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. J Cell Biol, 2010,190(5):777-791. | [7] | Schenk R, Jenke A, Zilbauer M, Wirth S, Postberg J . H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma, 2011,120(3):275-285. | [8] | Taguchi H, Xie Y, Horikoshi N, Maehara K, Harada A, Nogami J, Sato K, Arimura Y, Osakabe A, Kujirai T, Iwasaki T, Semba Y, Tachibana T, Kimura H, Ohkawa Y, Kurumizaka H . Crystal structure and characterization of novel human histone H3 variants, H3.6, H3.7, and H3.8. Biochemistry, 2017,56(16):2184-2196. | [9] | Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M . Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol, 2006,50(5):455-461. | [10] | Ahmad K, Henikoff S . The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell, 2002,9(6):1191-1200. | [11] | Udugama M, Chang FTM, Chan FL, Tang MC, Pickett HA , McGhie JDR, Mayne L, Collas P, Mann JR, Wong LH. Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res, 2015,43(21):10227-10237. | [12] | Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME . Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol, 2010,12(9):853-862. | [13] | Marzluff WF, Gongidi P, Woods KR, Jin JP, Maltais LJ . The human and mouse replication-dependent histone genes. Genomics, 2002,80(5):487-498. | [14] | Polo SE, Roche D, Almouzni G . New histone incorporation marks sites of UV repair in human cells. Cell, 2006,127(3):481-493. | [15] | Krimer DB, Cheng GH, Skoultchi AI . Induction of H3.3 replacement histone mRNAs during the precommitment period of murine erythroleukemia cell differentiation. Nucleic Acids Res, 1993,21(12):2873-2879. | [16] | Frank D, Doenecke D, Albig W . Differential expression of human replacement and cell cycle dependent H3 histone genes. Gene, 2003,312:135-143. | [17] | Akhmanova AS, Bindels PC, Xu J, Miedema K, Kremer H, Hennig W . Structure and expression of histone H3.3 genes in Drosophila melanogaster and Drosophila hydei. Genome, 1995,38(3):586-600. | [18] | Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo XY, Li X, Wen DC, Chapgier A, Dekelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang CW, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng DY, Allis CD . Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell, 2010,140(5):678-691. | [19] | Stroud H, Otero S, Desvoyes B, Ramírez-Parra E, Jacobsen SE, Gutierrez C . Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2012,109(14):5370-5375. | [20] | Kraushaar DC, Jin WF, Maunakea A, Abraham B, Ha M, Zhao KJ . Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3. Genome Biol, 2013,14(10):R121. | [21] | Ha M, Kraushaar DC, Zhao KJ . Genome-wide analysis of H3.3 dissociation reveals high nucleosome turnover at distal regulatory regions of embryonic stem cells. Epigenetics Chromatin, 2014,7:38. | [22] | Schwartz BE, Ahmad K . Chromatin assembly with H3 histones: full throttle down multiple pathways. Curr Top Dev Biol, 2006,74:31-55. | [23] | Ng RK, Gurdon JB . Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol, 2008,10(1):102-109. | [24] | Sakai A, Schwartz BE, Goldstein S, Ahmad K . Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol, 2009,19(21):1816-1820. | [25] | Banaszynski LA, Wen DC, Dewell S, Whitcomb SJ, Lin MY, Diaz N, Elsasser SJ, Chapgier A, Goldberg AD, Canaani E, Rafii S, Zheng DY, Allis CD . Hira-dependent histone H3.3 deposition facilitates PRC2 recruitment at developmental loci in ES cells. Cell, 2013,155(1):107-120. | [26] | Tamura T, Smith M, Kanno T, Dasenbrock H, Nishiyama A, Ozato K . Inducible deposition of the histone variant H3.3 in interferon-stimulated genes. J Biol Chem, 2009,284(18):12217-12225. | [27] | Hake SB, Garcia BA, Kauer M, Baker SP, Shabanowitz J, Hunt DF, Allis CD . Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci USA, 2005,102(18):6344-6349. | [28] | Fromental-Ramain C, Ramain P, Hamiche A . The Drosophila DAXX-like protein (DLP) cooperates with ASF1 for H3.3 deposition and heterochromatin formation. Mol Cell Biol, 2017,37(12):e00597. | [29] | Rapkin LM, Ahmed K, Dulev S, Li R, Kimura H, Ishov AM, Bazett-Jones DP . The histone chaperone DAXX maintains the structural organization of heterochromatin domains. Epigenetics Chromatin, 2015,8:44. | [30] | Gaillard PHL, Martini EMD, Kaufman PD, Stillman B, Moustacchi E, Almouzni G . Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell, 1996,86(6):887-896. | [31] | Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y . Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell, 2004,116(1):51-61. | [32] | Ricketts MD, Marmorstein R . A molecular prospective for HIRA complex assembly and H3.3-specific histone chaperone function. J Mol Biol, 2017,429(13):1924-1933. | [33] | Ricketts MD, Frederick B, Hoff H, Tang Y, Schultz DC, Singh Rai T, Grazia Vizioli M, Adams PD, Marmorstein R . Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex. Nat Commun, 2015,6:7711. | [34] | Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, Couble P . The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature, 2005,437(7063):1386-1390. | [35] | Szenker E, Lacoste N, Almouzni G . A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. Cell Rep, 2012,1(6):730-740. | [36] | Pchelintsev NA , McBryan T, Rai TS, Van Tuyn J, Ray- Gallet D, Almouzni G, Adams PD. Placing the HIRA histone chaperone complex in the chromatin landscape. Cell Rep, 2013,3(4):1012-1019. | [37] | Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, Puri A, Schultz DC, Pchelintsev NA, Adams PD, Jansen LET, Almouzni G . Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell, 2011,44(6):928-941. | [38] | Zhang HL, Gan HY, Wang ZQ, Lee JH, Zhou H, Ordog T, Wold MS, Ljungman M, Zhang ZG . RPA interacts with HIRA and regulates H3.3 deposition at gene regulatory elements in mammalian cells. Mol Cell, 2017,65(2):272-284. | [39] | Liu SF, Xu ZY, Leng H, Zheng P, Yang JY, Chen KF, Feng JX, Li Q . RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly. Science, 2017,355(6323):415-420. | [40] | Drané P, Ouararhni K, Depaux A, Shuaib M, Hamiche A . The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev, 2010,24(12):1253-1265. | [41] | Ratnakumar K, Bernstein E . ATRX: the case of a peculiar chromatin remodeler. Epigenetics, 2013,8(1):3-9. | [42] | Els?sser SJ, Huang HD, Lewis PW, Chin JW, Allis CD, Patel DJ . DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature, 2012,491(7425):560-565. | [43] | Xue YT, Gibbons R, Yan ZJ, Yang DF , McDowell TL, Sechi S, Qin J, Zhou S, Higgs D, Wang WD. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci USA, 2003,100(19):10635-10640. | [44] | Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED . Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature, 2002,416(6876):103-107. | [45] | Ratnakumar K, Duarte LF, Leroy G, Hasson D, Smeets D, Vardabasso C, Bonisch C, Zeng TY, Xiang B, Zhang DY, Li HT, Wang XW, Hake SB, Schermelleh L, Garcia BA, Bernstein E . ATRX-mediated chromatin association of histone variant macroH2A1 regulates α-globin expression. Genes Dev, 2012,26(5):433-438. | [46] | Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD . Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA, 2010,107(32):14075-14080. | [47] | Michod D, Bartesaghi S, Khelifi A, Bellodi C, Berliocchi L, Nicotera P, Salomoni P . Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron, 2012,74(1):122-135. | [48] | Voon HPJ, Hughes JR, Rode C , De La Rosa-Velázquez IA, Jenuwein T, Feil R, Higgs DR, Gibbons RJ. ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes. Cell Rep, 2015,11(3):405-418. | [49] | Jin CY, Zang CZ, Wei G, Cui KR, Peng WQ, Zhao KJ, Felsenfeld G . H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat Genet, 2009,41(8):941-945. | [50] | Chow CM, Georgiou A, Szutorisz H, Maiae Silva A, Pombo A, Barahona I, Dargelos E, Canzonetta C, Dillon N . Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep, 2005,6(4):354-360. | [51] | Els?sser SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA . Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature, 2015,522(7555):240-244. | [52] | Wolf G, Rebollo R, Karimi MM, Ewing AD, Kamada R, Wu W, Wu B, Bachu M, Ozato K, Faulkner GJ, Mager DL, Lorincz MC, Macfarlan TS . On the role of H3.3 in retroviral silencing. Nature, 2017,548(7665):E1-E3. | [53] | Huang HD, Deng Z, Vladimirova O, Wiedmer A, Lu F, Lieberman PM, Patel DJ . Structural basis underlying viral hijacking of a histone chaperone complex. Nat Commun, 2016,7:12707. | [54] | Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E, Pirrotta V, Kadonaga JT, Lusser A, Fyodorov DV . CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science, 2007,317(5841):1087-1090. | [55] | Delbarre E, Ivanauskiene K, Spirkoski J, Shah A, Vekterud K, Moskaug J?, B?e SO, Wong LH, Kuntziger T, Collas P . PML protein organizes heterochromatin domains where it regulates histone H3.3 deposition by ATRX/DAXX. Genome Res, 2017,27(6):913-921. | [56] | Sawatsubashi S, Murata T, Lim J, Fujiki R, Ito S, Suzuki E, Tanabe M, Zhao Y, Kimura S, Fujiyama S, Ueda T, Umetsu D, Ito T, Takeyama KI, Kato S . A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev, 2010,24(2):159-170. | [57] | Ivanauskiene K, Delbarre E , McGhie JD, Kuntziger T, Wong LH, Collas P. The PML-associated protein DEK regulates the balance of H3.3 loading on chromatin and is important for telomere integrity. Genome Res, 2014,24(10):1584-1594. | [58] | Van Der Heijden GW, Derijck AAHA, Posfai E, Giele M, Pelczar P, Ramos L, Wansink DG, Van Der Vlag J, Peters AHFM, De Boer P . Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet, 2007,39(2):251-258. | [59] | Yuen BTK, Bush KM, Barrilleaux BL, Cotterman R, Knoepfler PS . Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development, 2014,141(18):3483-3494. | [60] | Liu WQ, Yin JQ, Kou XC, Jiang YH, Gao HB, Zhao YH, Huang B, He WT, Wang H, Han ZM, Gao SR . Asymmetric reprogramming capacity of parental pronuclei in mouse zygotes. Cell Rep, 2014,6(6):1008-1016. | [61] | Nashun B, Akiyama T, Suzuki MG, Aoki F . Dramatic replacement of histone variants during genome remodeling in nuclear-transferred embryos. Epigenetics, 2011,6(12):1489-1497. | [62] | Wen DC, Banaszynski LA, Rosenwaks Z, Allis CD, Rafii S . H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos. Nucleus, 2014,5(5):369-375. | [63] | Wen DC, Banaszynski LA, Liu Y, Geng FQ, Noh KM, Xiang J, Elemento O, Rosenwaks Z, Allis CD, Rafii S . Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc Natl Acad Sci USA, 2014,111(20):7325-7330. | [64] | Wakayama S, Kohda T, Obokata H, Tokoro M, Li C, Terashita Y, Mizutani E, Van Thuan Nguyen, Kishigami S, Ishino F, Wakayama T . Successful serial recloning in the mouse over multiple generations. Cell Stem Cell, 2013,12(3):293-297. | [65] | Gao S, Zheng CH, Chang G, Liu WQ, Kou XC, Tan K, Tao L, Xu K, Wang H, Cai J, Tian JH, Gao SR . Unique features of mutations revealed by sequentially reprogrammed induced pluripotent stem cells. Nat Commun, 2015,6:6318. | [66] | Le RR, Kou ZH, Jiang YH, Li M, Huang B, Liu WQ, Li H, Kou XC, He WZ, Rudolph KL, Ju ZY, Gao SR . Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells. Cell Stem Cell, 2014,14(1):27-39. | [67] | Zheng Z, Jia JL, Bou G, Hu LL, Wang ZD, Shen XH, Shan ZY, Shen JL, Liu ZH , Lei L. rRNA genes are not fully activated in mouse somatic cell nuclear transfer embryos. J Biol Chem, 2012,287(24):19949-19960. | [68] | Zhao QS, Wu YS, Shan ZY, Bai GY, Wang ZD, Hu J, Liu L, Li T, Shen JL, Lei L . Serum starvation-induced cell cycle synchronization stimulated mouse rDNA transcription reactivation during somatic cell reprogramming into iPSCs. Stem Cell Res Ther, 2016,7(1):112. | [69] | Lin CJ, Koh FM, Wong P, Conti M, Ramalho-Santos M . Hira-mediated H3.3 incorporation is required for DNA replication and ribosomal RNA transcription in the mouse zygote. Dev Cell, 2014,30(3):268-279. | [70] | Jullien J, Astrand C, Szenker E, Garrett N, Almouzni G, Gurdon JB . HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes. Epigenetics Chromatin, 2012,5:17. |
|