[1] | Dubin DT, Taylor RH . The methylation state of poly A-containing messenger RNA from cultured hamster cells . Nucleic Acids Res, 1975,2(10):1653-1668. | [2] | Lee M, Kim B, Kim VN . Emerging roles of RNA modification: m 6A and U-tail . Cell, 2014,158(5):980-987. | [3] | Wei W, Ji X, Guo X, Ji S . Regulatory Role of N 6- methyladenosine (m 6 A) Methylation in RNA processing and human diseases . J Cell Biochem, 2017,118(9):2534-2543. | [4] | Zhang X, Jia GF . RNA epigenetic modification: N 6- methyladenosine. Hereditas(Beijing) , 2016,38(4):275-288. | [4] | 张笑, 贾桂芳 . RNA表观遗传修饰:N 6-甲基腺嘌呤 . 遗传, 2016,38(4):275-288. | [5] | Li YL, Yu J, Song SH . Recent progresses in RNA N6-methyladenosine research. Hereditas(Beijing), 2013,35(12):1340-1351. | [5] | 李语丽, 于军, 宋述慧 . RNA中6-甲基腺嘌呤的研究进展. 遗传, 2013,35(12):1340-1351. | [6] | Visvanathan A , Somasundaram K.mRNA traffic gontrol reviewed: N6-Methyladenosine (m 6 A) takes the driver's seat . Bioessays, 2018,40(1). doi: 10.1002/bies.201700093. | [7] | Jacob R, Zander S , Gutschner T. The Dark side of the epitranscriptome: chemical modifications in long non- coding RNAs . Int J Mol Sci, 2017, 18(11): pii: E2387. | [8] | Alarcón CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF . N6-methyladenosine marks primary microRNAs for processing . Nature, 2015,519(7544):482-485. | [9] | Berulava T, Rahmann S, Rademacher K, Klein-Hitpass L, Horsthemke B , N6-adenosine methylation in MiRNAs . PLoS One, 2015,10(2):e0118438. | [10] | Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM . Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase . RNA, 1997,3(11):1233-1247. | [11] | Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC . N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells . Nat Cell Biol, 2014,16(2):191-198. | [12] | Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ , S Adhikari,Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, U Dahal, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Rendtlew Danielsen JM, Liu F, Yang YG. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase . Cell Res, 2014,24(2):177-189. | [13] | Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, Hamakubo T . Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle . J Biol Chem, 2013,288(46):292-302. | [14] | |
[1] |
孙清玙, 周阳, 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳. 巨噬细胞相关基因与非小细胞肺癌预后和肿瘤微环境的分析[J]. 遗传, 2023, 45(8): 684-699. |
[2] |
严程浩, 白韦钰, 张智猛, 沈俊岭, 王友军, 孙建伟. STIM1在肿瘤发生及转移中的研究进展[J]. 遗传, 2023, 45(5): 395-408. |
[3] |
马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[4] |
常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127. |
[5] |
郝庆刚, 孙凤桂, 严程浩, 孙建伟. MT1-MMP在肿瘤转移中的研究进展[J]. 遗传, 2022, 44(9): 745-755. |
[6] |
赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[7] |
曲卉, 柳毅, 陈雅文, 汪晖. 环境因素所致印迹基因改变与子代器官发育[J]. 遗传, 2022, 44(2): 107-116. |
[8] |
张杨景晖, 常沛瑶, 杨紫淑, 薛宇航, 李雪奇, 张旸. 表观遗传修饰影响花青苷合成研究进展[J]. 遗传, 2022, 44(12): 1117-1127. |
[9] |
赵清雯, 潘东宁. 表观遗传修饰对脂肪组织产热的调控进展[J]. 遗传, 2022, 44(10): 867-880. |
[10] |
何江平, 陈捷凯. 转座元件、表观遗传调控与细胞命运决定[J]. 遗传, 2021, 43(9): 822-834. |
[11] |
王雅楠, 徐涛, 王万鹏, 张庆祝, 解莉楠. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. |
[12] |
袁洁, 蔡时青. 衰老过程中行为和认知功能退化的调控机制研究[J]. 遗传, 2021, 43(6): 545-570. |
[13] |
寇艳妮, 岑山, 李晓宇. LINE-1在肿瘤早期诊断和治疗中的研究与应用[J]. 遗传, 2021, 43(6): 571-579. |
[14] |
王天一, 王应祥, 尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传, 2021, 43(4): 323-339. |
[15] |
王卓, 申笑涵, 施奇惠. 单细胞基因组测序技术新进展及其在生物医学中的应用[J]. 遗传, 2021, 43(2): 108-117. |
|