遗传 ›› 2022, Vol. 44 ›› Issue (2): 134-152.doi: 10.16288/j.yczz.21-327
时子文(), 何青, 赵卓凡, 刘孝伟, 张鹏, 曹墨菊()
收稿日期:
2021-09-08
修回日期:
2021-11-09
出版日期:
2022-02-20
发布日期:
2022-01-17
通讯作者:
曹墨菊
E-mail:ziwen_shi@163.com;caomj@sicau.edu.cn
作者简介:
时子文,在读博士研究生,专业方向:作物遗传育种。E-mail: 基金资助:
Ziwen Shi(), Qing He, Zhuofan Zhao, Xiaowei Liu, Peng Zhang, Moju Cao()
Received:
2021-09-08
Revised:
2021-11-09
Online:
2022-02-20
Published:
2022-01-17
Contact:
Cao Moju
E-mail:ziwen_shi@163.com;caomj@sicau.edu.cn
Supported by:
摘要:
植物雄性不育是指植物雄性生殖器官不能产生正常有功能花粉的现象。玉米(Zea mays L.)是重要的粮食作物之一,也是较早利用杂种优势的作物之一。当前,生产上广泛种植的玉米品种类型主要是单交种。我国玉米杂交种的播种面积常年稳定在6.2亿亩左右,年用种量10亿公斤以上,常年制种面积高达250多万亩。利用传统的人工去雄或机械去雄的制种方式进行杂交种子的生产,通常需要投入大量的人力、物力和财力。我国玉米制种基地具有明显的区域性,而玉米制种基地对劳动力的需求具有较强的季节性,当前伴随着大量农村劳动力的城市化转移,玉米制种基地出现了严重的用工慌,制种基地的租地费用和人工成本不断提高,使得种子生产成本不断升高。利用植物雄性不育系进行杂交种子的规模化生产,不仅能有效保证杂交种纯度,而且可以大大降低杂交种子的生产成本,同时还可避免极端天气条件下的人工去雄或机械去雄的田间操作困难等问题。因此利用雄性不育进行不育化制种是玉米种业发展的必然趋势。本文综述了我国玉米细胞质雄性不育以及包含光温敏雄性不育在内的细胞核雄性不育资源的发掘及创制进程、植物雄性不育资源从自然群体中获得到有目的性创制的发展过程及玉米雄性不育的研究进展,分析了玉米雄性不育的应用现状及存在的问题。基于我国玉米种业的发展趋势和雄性不育的研究及应用现状,提出了7个需要加强的方面,为玉米雄性不育的创制、研究和利用提供参考。
时子文, 何青, 赵卓凡, 刘孝伟, 张鹏, 曹墨菊. 玉米雄性不育资源的发掘与利用[J]. 遗传, 2022, 44(2): 134-152.
Ziwen Shi, Qing He, Zhuofan Zhao, Xiaowei Liu, Peng Zhang, Moju Cao. Exploration and utilization of maize male sterility resources[J]. Hereditas(Beijing), 2022, 44(2): 134-152.
表1
我国自主创制的玉米CMS资源"
材料名称 | 材料来源 | 胞质类型 | 参考文献 |
---|---|---|---|
G、类2、类3 | 远缘杂交 | C型胞质 | [ |
R1、R2 | 远缘杂交 | C型胞质 | [ |
A1、A2 | 组织培养 | C型胞质 | [ |
SauS1、SauS2、SauS3 | 航天诱变 | C型胞质 | [ |
SauS4、SauS5 | 航天诱变 | T型胞质 | [ |
远徐cms-小黄、恩二激cms-大黄 | 地方品种 | S型胞质 | [ |
YII-1 | 核置换 | 待分组 | [ |
L2 | 钴60诱变 | L2型胞质 | [ |
WBMs | 人工混合群体WBM | S型胞质 | [ |
JnA | 天然雄性不育 | S型胞质 | [ |
CMS-P | 爆裂玉米种质 | S型胞质 | [ |
GDS | 杂种后代的自交分离 | C型胞质 | [ |
Ta-CMS | 钴60诱变 | T型胞质 | [ |
泰玉D2s | - | 待分组 | [ |
928CMS-Q1261 | 核置换 | S型胞质 | [ |
MD32 | - | S型胞质 | [ |
85218A | 化学诱变 | C型胞质 | [ |
DT-合344、ZT-合344 | 外源总DNA导入 | T型胞质 | [ |
PH6WCcms-LK18 | - | C型胞质 | [ |
CF3 | C7-2与PH4CV杂交后代 | S型胞质 | [ |
晋玉1A | 核置换 | S型胞质 | [ |
表2
我国自主创制的玉米GMS资源"
突变体 | 基因ID(V3/V4) | 染色体 | 编码蛋白 | 突变体来源 | 参考文献 |
---|---|---|---|---|---|
ms39 | Zm00001d043909 | 3L | Callose synthase 12 | 航天诱变 | [ |
ms2015-1 | - | 6 | - | 航天诱变 | 未发表 |
ms2015-2 | - | 7S | - | 航天诱变 | 未发表 |
ms40 | Zm00001d053895 | 4L | bHLH-transcription factor 51 | EMS诱变 | [ |
ms305 | - | 2L | - | 钴60诱变 | [ |
5280ms | - | 1 | - | 航天诱变 | [ |
8057ms | - | 4 | - | 航天诱变 | [ |
未命名 | - | 2 | - | 航天诱变 | [ |
ms10/apv1 | GRMZM5G830329 | 10L | Cytochrome P450 monooxygenase | 自然突变 | [ |
4505m/ms8 | GRMZM2G119265 | 8L | Beta-1,3-galactosyltransferase | 钴60诱变 | [ |
3552m/silky1 | GRMZM2G139073 | 6L | - | 钴60诱变 | [ |
未命名 | Zm00001d053895 | 4L | bHLH-transcription factor 51 | EMS诱变 | [ |
tms1 | - | 3 | - | 天然雄性不育(温敏) | [ |
tms2 | - | 5 | - | 天然雄性不育(温敏) | [ |
tms3 | - | 2 | - | 天然雄性不育(温敏) | [ |
未命名 | - | - | - | 天然雄性不育(光敏) | [ |
ZmTMS5 | GRMZM2G147727 | 4L | Uuclear ribonuclease Z putative expressed | 基因编辑(温敏) | [ |
tvt1-R | Zm00001d045192 | 9S | Large subunit of RNR | 重离子辐射(温敏) | [ |
表3
已经克隆的玉米核雄性不育基因"
编号 | 突变体/基因 | 基因ID(B73_V4) | 染色体 | 编码蛋白 | 参考文献 |
---|---|---|---|---|---|
1 | ms2 | Zm00001d046537 | 9L | ABC transporter G family protein | [ |
2 | ms5/ipe2 | Zm00001d015960 | 5L | GDSL lipase | [ |
3 | ms7 | Zm00001d020680 | 7L | PHD-finger transcription factor | [ |
4 | ms8 | Zm00001d012234 | 8L | Beta-1,3-galactosyltransferase | [ |
5 | ms9 | Zm00001d028777 | 1S | MYB transcription factor | [ |
6 | ms10/apv1 | Zm00001d024712 | 10L | Cytochrome P450 monooxygenase,CYP703A2 | [ |
7 | ms20/ipe1 | Zm00001d029683 | 1S | GMC oxidoreductase | [ |
8 | ms22/msca1 | Zm00001d018802 | 7S | Glutaredoxin | [ |
9 | ms23 | Zm00001d008174 | 8S | bHLH transcription factor | [ |
10 | ms26 | Zm00001d027837 | 1S | Cytochrome P450 monooxygenase,CYP704B1 | [ |
11 | ms28 | Zm00001d013063 | 5S | AGO family protein | [ |
12 | ms30 | Zm00001d052403 | 4L | GDSL esterase/lipase protein | [ |
13 | ms32 | Zm00001d006564 | 2L | bHLH transcription factor | [ |
14 | ms33 | Zm00001d007714 | 2L | GPAT protein | [ |
15 | ms39 | Zm00001d043909 | 3L | Callose synthase 12 | [ |
16 | ms40 | Zm00001d053895 | 4L | bHLH-transcription factor 51 | [ |
17 | Ms44 | Zm00001d052736 | 4L | Type C non-specific lipid transfer protein | [ |
18 | ms45 | Zm00001d047859 | 9L | Strictosidin synthase | [ |
19 | mac1 | Zm00001d023681 | 10S | MAC1 protein | [ |
20 | ms6021 | Zm00001d048337 | 9L | Fatty-acyl-CoA reductase | [ |
21 | tms5 | Zm00001d053351 | 4L | Uuclear ribonuclease Z putative expressed | [ |
22 | ig1 | Zm00001d042560 | 3L | LBD transcription factor | [ |
23 | ocl4 | Zm00001d030069 | 1S | HD-ZIP IV transcription factor | [ |
24 | dcl5 | Zm00001d032655 | 1L | Dicer-like 5 | [ |
25 | tvt1-R | Zm00001d045192 | 9S | Large subunit of RNR | [ |
26 | Si3 | Zm00001d004130 | 2L | Potential transcriptional regulator | [ |
[1] |
Wu YZ, Fox TW, Trimnell MR, Wang LJ, Xu RJ, Cigan AM, Huffman GA, Garnaat CW, Hershey H, Albertsen MC. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J, 2016, 14(3):1046-1054.
doi: 10.1111/pbi.2016.14.issue-3 |
[2] |
Zhang DF, Wu SW, An XL, Xie K, Dong ZY, Zhou Y, Xu LW, Fang W, Liu SS, Liu SS, Zhu TT, Li JP, Rao LQ, Zhao JR, Wan XY. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J, 2018, 16(2):459-471.
doi: 10.1111/pbi.2018.16.issue-2 |
[3] |
An XL, Dong ZY, Tian YH, Xie K, Wu SW, Zhu TT, Zhang DF, Zhou Y, Niu CF, Ma B, Hou QC, Bao JX, Zhang SM, Li ZW, Wang YB, Yan TW, Sun XJ, Zhang YW, Li JP, Wan XY. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol Plant, 2019, 12(3):343-359.
doi: 10.1016/j.molp.2019.01.011 |
[4] |
An XL, Ma B, Duan MJ, Dong ZY, Liu RG, Yuan DY, Hou QC, Wu SW, Zhang DF, Liu DC, Yu D, Zhang YW, Xie K, Zhu TT, Li ZW, Zhang SM, Tian YH, Liu C, Li JP, Yuan LP, Wan XY. Molecular regulation ofZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA, 2020, 117(38):23499-23509.
doi: 10.1073/pnas.2010255117 |
[5] | 杨允奎, 杜世灿, 段光辉. 利用玉米雄性不育特性制造杂种的研究. 作物学报, 1962, 1(1):35-42. |
[6] | Yang YK, Du SC, Duan GH, Yang LG. Further studies on the utilization of male-sterility in producing maize hybrids. Acta Agron Sin, 1963, 2(3):297-302. |
杨允奎, 杜世烂, 段光辉, 杨令贵. 利用雄性不育特性制造玉米杂交种的研究续报. 作物学报, 1963, 2(3):297-302. | |
[7] | Yang JP, Gao ZR, Rong TZ. Comparative studies of cytology on isonuclear allopbasmic male-sterile lines in maize. Journal of Sichuan Agricultural University, 1990, 8(3):238-242. |
杨俊品, 高之仁, 荣廷昭. 同核异质玉米细胞质雄性不育系的细胞学比较研究. 四川农业大学学报, 1990, 8(3):238-242. | |
[8] | Li WC, Rong TZ, Lei BM, Cao MJ, Hu CY. Breeding and classification of three cytoplasmic male sterile inbreds in maize. Acta Agron Sin, 2001, 27(3):308-312. |
李晚忱, 荣廷昭, 雷本鸣, 曹墨菊, 胡长远. 3个玉米细胞质雄性不育系的选育及分组鉴定. 作物学报, 2001, 27(3):308-312. | |
[9] | Rong TZ, Li WC, Cao MJ, Hu CY. Study on identification in group of cytoplasmic male sterile in maize. Scientia Agrcultura Sinica, 2002, 35(9):1055-1059. |
荣廷昭, 李晚忱, 曹墨菊, 胡长远. 玉米细胞质雄性不育分组鉴定研究. 中国农业科学, 2002, 35(9):1055-1059. | |
[10] | Wang J, Rong TZ, Cao MJ. Preliminary identification and analysis of two new male sterile maize materials. Journal of Sichuan Agricultural University, 2009, 27(4):415-418. |
汪静, 荣廷昭, 曹墨菊. 两个新选玉米雄性不育材料的初步鉴定和分析. 四川农业大学学报, 2009, 27(4):415-418. | |
[11] | Xu XX, Rong TZ, Cao MJ. Discovery and genetic study of new male sterile in maize. Journal of Maize Sciences, 2006, 14(1):55-58. |
徐小逊, 荣廷昭, 曹墨菊. 一个新的玉米雄性不育材料的发现及其初步遗传分析. 玉米科学, 2006, 14(1):55-58. | |
[12] | Rong FJ, Cao MJ, Tang QL, Pan GT, Rong TZ. Genetic analysis of a new type of maize CMS obtained from the offspring of transgenic Bt maize. Journal of Sichuan Agricultural University, 2007, 25(1):29-33. |
荣凤军, 曹墨菊, 唐祈林, 潘光堂, 荣廷昭. 转Bt基因后代玉米新不育胞质A的遗传分析. 四川农业大学学报, 2007, 25(1):29-33. | |
[13] | Zhang CB, Yuan GZ, Wang J, Pan GT, Rong TZ, Cao MJ. Genetic analysis of maize cytoplasmic male sterile mutants obtained by space flight. Hereditas(Beijing), 2011, 33(2):175-181. |
张采波, 袁国钊, 汪静, 潘光堂, 荣廷昭, 曹墨菊. 空间环境诱发玉米细胞质雄性不育突变体的遗传分析. 遗传, 2011, 33(2):175-181. | |
[14] |
Yi HY, Zhang CB, Li C, Wang J, Yu T, Liu YM, Cao MJ. Identification and genetic analysis of two maize CMS-T mutants obtained from out-space-flighted seeds. Genetic Resources and Crop Evolution, 2021, 68(5):1-11.
doi: 10.1007/s10722-020-01032-0 |
[15] | Li JS, Xu SZ, Lai JR, Zheng YL, Xiong XZ, Liu JL. Cytoplasmic classification of two male sterile lines of maize. Acta Agron Sin, 1993, 19(2):156-164. |
李建生, 徐尚忠, 赖菁茹, 郑用琏, 熊秀珠, 刘纪麟. 对两个玉米雄性不育系的细胞质分类研究. 作物学报, 1993, 19(2):156-164. | |
[16] | Qin TC, Chen JG, Xu ML, Deng DX, Bian YL. Investigation on male sterility inZea mays Ⅷ. A preliminary study on identification the group of YⅡ-1 type male sterile cytoplasm. Acta Agron Sin, 1994, 20(6):677-684. |
秦泰辰, 陈建国, 徐明良, 邓德祥, 卞云龙. 玉米雄性不育性研究Ⅷ.玉米YⅡ-1型不育胞质归群初报. 作物学报, 1994, 20(6):677-684. | |
[17] | Chen QH. Breeding of the L2-type cytoplasmic male sterility in maize and its use in production. Maize Science, 1997, 5(2):1-4. |
陈庆华. 玉米“辽2(L2)”型细胞质雄性不育性的选育与利用. 玉米科学, 1997, 5(2):1-4. | |
[18] | Yi XQ, Wang BH, Liu JL, Li JS, Xu SZ, Zheng YL. Classification of male sterile cytoplasms of WBMs in maize(Zea mays L.). Acta Agron Sin, 2004, 30(4):304-307. |
李小琴, 万邦惠, 刘纪麟, 李建生, 徐尚忠, 郑用琏. 玉米细胞质雄性不育材料WBMs的胞质分类研究. 作物学报, 2004, 30(4):304-307. | |
[19] | Hou AB, Liu QS, Dong LL, Li TY, Hou XD, Liang D, Duan B. Application and classification of cytoplasmic male sterile inbred JnA in maize. Acta Agriculturae Boreali-Sinica, 2006, 21(1):31-34. |
侯爱斌, 柳青山, 董良利, 李团银, 侯旭东, 梁笃, 段冰. 玉米细胞质雄性不育系JnA的分组鉴定及利用. 华北农学报, 2006, 21(1):31-34. | |
[20] | Chen W, Liu ZX, Er LZ, Yang H, Dai JR. Classification of male sterile cytoplasm of CMS-P in maize (Zea mays everta). Acta Agron Sin, 2007, 33(2):196-200. |
陈伟, 刘占先, 鄂立柱, 杨会, 戴景瑞. 玉米细胞质雄性不育材料CMS-P的胞质分类研究. 作物学报, 2007, 33(2):196-200. | |
[21] | Luo HB, Huang H, Zhou WX, Tu NM, Luo SQ. Study on classification of cytoplasmic male sterile line GDS in maize. Maize Science, 2008, 16(2):8-11. |
罗红兵, 黄璜, 周文新, 屠乃美, 罗水清. 玉米GDS细胞质雄性不育系的分类研究. 玉米科学, 2008, 16(2):8-11. | |
[22] | Guo BJ, Zhang ZX, Chen BT, Liu BS. Genetic analysis of male sterile cytoplasm of Ta-CMS in maize. Molecular Plant Breeding, 2008, 6(3):491-494. |
郭宝健, 张振兴, 陈丙堂, 刘保申. Ta型玉米细胞质雄性不育材料的遗传分析. 分子植物育种, 2008, 6(3):491-494. | |
[23] | Zhang ZC, Dong ST, Gao RQ, Sun QQ, Cui LN, Zhang HL. The morphological studies on pollen abortion of a new cytoplasmic male sterile material-taiyu D2 in maize. Maize Science, 2009, 17(3):76-79. |
张增川, 董树亭, 高荣岐, 孙庆泉, 崔丽娜, 张华利. 新型玉米细胞质雄性不育材料泰玉D2花粉败育的细胞学研究. 玉米科学, 2009, 17(3):76-79. | |
[24] | Zhu LY, Chen JT, Huang YQ, Zhao YF, Song ZQ. Identification and genetic analysis of a cytoplasmic male sterile line in maize (Zea mays L.). Scientia Agricultura Sinica, 2012, 45(9):1676-1684. |
祝丽英, 陈景堂, 黄亚群, 赵永锋, 宋占权. 一个玉米细胞质雄性不育系的鉴定及遗传分析. 中国农业科学, 2012, 45(9):1676-1684. | |
[25] | Song W, Su AG, Xing JF, Wu JF, Zhao JR. Study on breeding of new S-type cytoplasmic male sterile material from maize inbred line Jing724 with molecular marker assisted selection. Maize Science, 2016, 24(1):33-36, 42. |
宋伟, 苏爱国, 邢锦丰, 吴金凤, 赵久然. 京724玉米自交系S型细胞质雄性不育系分子标记辅助选育研究. 玉米科学, 2016, 24(1):33-36, 42. | |
[26] | Sun LF, Deng J, Wang X, Zhao W, Yang KJ, Miao XF, Gao SR. Type identification of cytoplasmic male sterile line and study of pollen abortion in maize. Crops, 2016, 32(3):27-32. |
孙丽芳, 邓杰, 王霞, 赵伟, 杨克军, 苗兴芬, 高树仁. 玉米细胞质雄性不育系胞质类型鉴定及花粉败育研究. 作物杂志, 2016, 32(3):27-32. | |
[27] | Xu YY, Deng J, Wang QX, Yu J, Wang X, Zhao W, Sun LF. Identification of cytoplasmic male sterile line in maize. Journal of Heilongjiang Bayi Agricultural University, 2016, 28(5):19-26. |
徐莹莹, 邓杰, 王秋雪, 于杰, 王霞, 赵伟, 孙丽芳. 玉米细胞质雄性不育系的鉴定. 黑龙江八一农垦大学学报, 2016, 28(5):19-26. | |
[28] | She KJ, Liu YJ, Chen JL, Yang GH, Liu YN. ldentification and analysis of one maize cytoplasmic male sterile line ‘PH6WCcms-LK187’. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(12):1797-1802. |
佘奎军, 刘永进, 程晋龙, 杨国虎, 刘艳妮. 玉米胞质雄性不育材料‘PH6WCcms-LK18’的鉴定及分析. 西北农业学报, 2017, 26(12):1797-1802. | |
[29] | Wang J, Zhao Y, Wang L. Obtaining and identification of a novel cytoplasmic male sterile line from maize. Journal of Agricultural Science and Technology, 2019, 21(3):28-33. |
王洁, 赵阳, 王磊. 一个新的玉米胞质雄性不育系的获得及鉴定. 中国农业科技导报, 2019, 21(3):28-33. | |
[30] | Zhang HH, Cui GM, Wang ZB, Wang XQ, Hao YS, Du JZ, Wang YX, Sun Y. Breeding and characteristics of a new male sterile line of maize, Jinyu1A. Scientia Agricultura Sinica, 2020, 53(21):4322-4332. |
张欢欢, 崔贵梅, 王长彪, 王晓清, 郝曜山, 杜建中, 王亦学, 孙毅. 玉米雄性不育系晋玉1A的选育及其特性. 中国农业科学, 2020, 53(21):4322-4332. | |
[31] |
Eyster LA. Heritable characters of maize. VII. Male sterile. Journal of Heredity, 1921, 12(3):138-141.
doi: 10.1093/jhered/12.3.138 |
[32] |
Singleton WR, Jones DF. Heritable characters of maize. XXXV. Male sterile. Journal of Heredity, 1930, 21(6):266-268.
doi: 10.1093/oxfordjournals.jhered.a103340 |
[33] |
Eyster WH. Heritable characters of maize. Male sterile. Journal of Heredity, 1931, 22(3):99-102.
doi: 10.1093/oxfordjournals.jhered.a103452 |
[34] |
Eyster WH. Heritable characters of maize. XXXIX. Male sterile-3. Journal of Heredity, 1931, 22(4):117-119.
doi: 10.1093/oxfordjournals.jhered.a103454 |
[35] | Albertsen MC, Phillips RL. Developmental cytology of 13 genetic male sterile loci in maize. Canadian Journal of Genetics & Cytology, 1981, 23(2):195-208. |
[36] | Skibbe DS, Schnable PS. Male sterility in maize. Maydica, 2005, 50(3):367-376. |
[37] |
Xu QL, Yang L, Kang D, Ren ZJ, Liu YJ. MaizeMS2 encodes an ATP-binding cassette transporter that is essential for anther development. The Crop Journal, 2021, 9(6):1301-1308.
doi: 10.1016/j.cj.2021.04.001 |
[38] |
Huo YQ, Pei YR, Tian YH, Zhang ZG, Li K, Liu J, Xiao SL, Chen HB, Liu J. IRREGULAR POLLEN EXINE2 encodes a GDSL lipase essential for male fertility in maize. Plant Physiol, 2020, 184(3):1438-1454.
doi: 10.1104/pp.20.00105 |
[39] |
Somaratne Y, Tian YH, Zhang H, Wang MM, Huo YQ, Cao FG, Zhao L, Chen HB. ABNORMAL POLLEN VACUOLATION1 (apv1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J, 2017, 90(1):96-110.
doi: 10.1111/tpj.2017.90.issue-1 |
[40] |
Chen XY, Zhang H, Sun HY, Luo HB, Zhao L, Dong ZB, Yan SS, Zhao C, Liu RY, Xu CY, Li S, Chen HB, Jin WW. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol, 2017, 173(1):307-325.
doi: 10.1104/pp.16.00629 |
[41] |
Li YF, Huang YM, Pan LL, Zhao Y, Huang W, Jin WW. Male sterile 28 encodes an ARGONAUTE family protein essential for male fertility in maize. Chromosome Res, 2021, 29(2):189-201.
doi: 10.1007/s10577-021-09653-6 |
[42] |
Xie K, Wu SW, Li ZW, Zhou Y, Zhang DF, Dong ZY, An XL, Zhu TT, Zhang SM, Liu SS, Li JP, Wan XY. Map-based cloning and characterization ofZea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3- phosphate acyltransferase. Theor Appl Genet, 2018, 131(6):1363-1378.
doi: 10.1007/s00122-018-3083-9 pmid: 29546443 |
[43] |
Zhu YH, Shi ZW, Li SZ, Liu HY, Liu FX, Niu QK, Li C, Wang J, Rong TZ, Yi HY, Cao MJ. Fine mapping of the novel male-sterile mutant genems39 in maize originated from outer space flight. Molecular Breeding, 2018, 38:125.
doi: 10.1007/s11032-018-0878-y |
[44] |
Liu XW, Yue YJ, Gu ZC, Huang Q, Pan ZJ, Zhao ZF, Zheng MM, Zhang ZM, Li C, Yi HY, Yu T, Cao MJ. The characterization and candidate gene isolation for a novel male-sterile mutantms40 in maize. Plant Cell Rep, 2021, 40(10):1957-1970.
doi: 10.1007/s00299-021-02762-w |
[45] |
Tian YH, Xiao SL, Liu J, Somaratne Y, Zhang H, Wang MM, Zhang HR, Zhao L, Chen HB. MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Sci Rep, 2017, 7(1):16736.
doi: 10.1038/s41598-017-16930-0 |
[46] |
Li J, Zhang HW, Si XM, Tian YH, Chen KL, Liu JX, Chen HB, Gao CX. Generation of thermosensitive male-sterile maize by targeted knockout of theZmTMS5 gene. J Genet Genomics, 2017, 44(9):465-468.
doi: 10.1016/j.jgg.2017.02.002 |
[47] |
Xie SY, Luo HB, Huang YM, Wang YX, Ru W, Shi YL, Huang W, Wang H, Dong ZB, Jin WW. A missense mutation in a large subunit of ribonucleotide reductase confers temperature-gated tassel formation. Plant Physiol, 2020, 184(4):1979-1997.
doi: 10.1104/pp.20.00219 |
[48] |
Luo HS, Meng DX, Liu HB, Xie MJ, Yin CF, Liu F, Dong ZB, Jin WW. Ectopic expression of the transcriptional regulatorsilky3 causes pleiotropic meristem and sex determination defects in maize inflorescences. Plant Cell, 2020, 32(12):3750-3773.
doi: 10.1105/tpc.20.00043 |
[49] | Liu FX, Cao MJ, Rong TZ, Pan GT. Locating maize male sterility gene induced by space flight using microsatellite markers. Acta Genetica Sinica, 2005, 32(7):753-757. |
刘福霞, 曹墨菊, 荣廷昭, 潘光堂. 用微卫星标记定位太空诱变玉米核不育基因. 遗传学报, 2005, 32(7):753-757. | |
[50] | Wang J, Chen J, Cao MJ. Genetic analysis and gibberellins treatment effects on dwarfism of maize genic male sterile mutant induced by space flight. Guihaia, 2016, 36(6):707-712. |
汪静, 程江, 曹墨菊. 太空诱变玉米核不育突变体矮化的遗传及外施赤霉素分析. 广西植物, 2016, 36(6):707-712. | |
[51] | Li SZ, Cao MJ, Rong TZ, Pan GT, Zhu YG. SSR mapping of maize genetic male sterile gene induced by space flight. Chinese High Technology Letters, 2007, 17(8):869-873. |
李式昭, 曹墨菊, 荣廷昭, 潘光堂, 朱英国. 太空诱变玉米核不育基因的SSR作图. 高技术通讯, 2007, 17(8):869-873. | |
[52] | Niu QK, Yang C, Shi ZW, Cao MJ. QTL mapping of dwarf-associated traits in the maize male sterile mutant obtained by space flight. Journal of Sichuan Agricultural University, 2018, 36(4):429-435, 480. |
牛群凯, 杨聪, 时子文, 曹墨菊. 玉米太空诱变核不育突变体矮化性状的QTL定位及分析. 四川农业大学学报, 2018, 36(4):429-435, 480. | |
[53] |
Wang Y, Gu RH, Chen HW, Shi HC, Yu XJ, Zhang HJ, Zhao CY, Sun Q, Ke YP. Characterization and genetic mapping of a novel recessive genic male sterile genems305 in maize(Zea mays L.). Israel Journal of Plant Sciences, 2015, 62(3):208-214.
doi: 10.1080/07929978.2015.1075316 |
[54] |
Li YL, Yu YL, Liu YX, Li XH, Fu JF. Genetic study on two maize male sterile mutants obtained by space mutagenesis. Hereditas(Beijing), 2007, 29(6):738-744.
pmid: 17650492 |
李玉玲, 余永亮, 刘艳霞, 李学慧, 付家锋. 两份太空诱变玉米雄性不育突变体的遗传研究. 遗传, 2007, 29(6):738-744.
pmid: 17650492 |
|
[55] | Li YL, Yu YL, Liu YY, Zhang XH, Fu JF, Zhang ZW, Chen HQ. Mapping on two maize nuclear male sterile genes by space mutagenesis using SSR markers. Journal of Henan Agricultural University, 2008, 42(3):245-249. |
李玉玲, 余永亮, 刘艳阳, 张学慧, 付家锋, 张中伟, 陈欢庆. 太空诱变玉米核不育基因的微卫星标记. 河南农业大学学报, 2008, 42(3):245-249, 254. | |
[56] | Xu XB, Yin WJ, Xin YJ, Xu LH, Zhou ZH, Han JL, Ding Y. Genetic analysis of maize male sterile mutant obtained by space flight. Shandong Agricultural Sciences, 2013, 45(4):28-31. |
徐相波, 阴卫军, 邢燕菊, 徐立华, 周柱华, 韩金龙, 丁一. 太空诱变玉米雄性不育突变体的遗传分析. 山东农业科学, 2013, 45(4):28-31. | |
[57] | Li XP, Li JL, Chen XP, Zeng X, Long T, An BG, Zhang W, Wu YZ, Huang JP. Screening and molecular characterization of corn male sterile mutants. Journal of Maize Sciences, 2018, 26(3):12-16, 21. |
李新鹏, 李京琳, 陈小朋, 曾翔, 龙湍, 安保光, 张维, 吴永忠, 黄培劲. 玉米突变体库创制及雄性不育突变体鉴定. 玉米科学, 2018, 26(3):12-16, 21. | |
[58] |
Shi Z, Ren W, Zhao YX, Wang XQ, Zhang RY, Su AG, Wang S, Li CH, Wang JR, Wang SS, Zhang YX, Ji YL, Song W, Zhao JR. Identification of a locus associated with genic male sterility in maize via EMS mutagenesis and bulked-segregant RNA-seq. The Crop Journal, 2021, 9(6):1263-1269.
doi: 10.1016/j.cj.2020.09.007 |
[59] | 赫忠友, 李元秉, 谭树义, 林力, 洪德开. 温敏核雄性不育玉米的发现及初步研究. 作物杂志, 1995, 11(2):1-2. |
[60] | Tang JH, He ZY, Tan SY, Chen WC, Hu YM, Liu ZH, Li ML. Study on the fertility conversion mechanism of the temperature-sensitive genic male-sterile line in maize. Journal of Henan Agricultural University, 2000, 34(1):4-6. |
汤继华, 赫忠友, 谭树义, 陈伟程, 胡彦民, 刘宗华, 李永亮. 玉米温敏型核雄性不育系育性机制转换研究. 河南农业大学学报, 2000, 34(1):4-6. | |
[61] | Fu ZY, Zhao GY, Tang JH, Hu YM, He ZY, He J. Comparison about traits related to fertility between two maize thermo-sensitive genic male sterile (TGMS) lines and primary mapping the genes for TGMS. Molecular Plant Breeding, 2004, 2(5):633-636. |
付志远, 赵广远, 汤继华, 胡彦民, 赫忠友, 赫晋. 两种玉米温敏不育系的育性相关性状的比较及不育基因的初步定位. 分子植物育种, 2004, 2(5):633-636. | |
[62] | Tang JH, Hu YM, Fu ZY, He ZY, He J, Chen WC. Developmant, identification and genetic analysis of a new thermo-sensitive genic male sterile line in maize. Scientia Agricultura Sinica, 2007, 40(5):889-894. |
汤继华, 胡彦民, 付志远, 赫忠友, 赫晋, 陈伟程. 一种新型玉米温敏核雄性不育系的发现、鉴定及遗传分析. 中国农业科学, 2007, 40(5):889-894. | |
[63] |
Tang JH, Fu ZY, Hu YM, Li JS, Sun LL, Ji HQ. Genetic analyses and mapping of a new thermo-sensitive genic male sterile gene in maize. Theor Appl Genet, 2006, 113(1):11-15.
pmid: 16783588 |
[64] | Zhou HS, Tian ZG, Wu JF, Deng YH. Discovery and primary study on the photoperiod sensitive male sterility in maize. Maize Science, 1997, 5(3):1-3. |
周洪生, 田志国, 吴景锋, 邓迎海. 玉米光敏雄性不育的发现及初步研究. 玉米科学, 1997, 5(3):1-3. | |
[65] |
Prakash S, Chopra VL. Male sterility caused by cytoplasm of Brassica oxyrrhina in B. campestris and B. juncea. Theor Appl Genet, 1990, 79(2):285-287.
doi: 10.1007/BF00225965 pmid: 24226232 |
[66] |
Zubko MK, Zubko EI, Patskovsky YV, Khvedynich OA, Fisahn J, Gleba YY, Schieder O. Novel 'homeotic' CMS patterns generated inNicotiana via cybridization with Hyoscyamus and Scopolia. Journal of Experimental Botany, 1996, 47(8):1101-1110.
doi: 10.1093/jxb/47.8.1101 |
[67] | Ling DH, Liang CY, Ma ZR, Chen MF, He BS. Somaclonal male-sterile mutants and their expressions in indica rice. Chinese Journal of Rice Science, 1990, 4(1):15-21. |
凌定厚, 梁承邺, 马镇荣, 陈梅芳, 何炳森. 籼稻体细胞无性系雄性不育变异及其表现. 中国水稻科学, 1990, 4(1):15-21. | |
[68] |
Zhou H, Zhou M, Yang YZ, Li J, Zhu LY, Jiang DG, Dong JF, Liu QJ, Gu LF, Zhou LY, Feng MJ, Qin P, Hu XC, Song CL, Shi JF, Song XW, Ni ED, Wu XJ, Deng QY, Liu ZL, Chen MS, Liu YG, Cao XF, Zhuang CX. RNase ZS1 processesUbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun, 2014, 5:4884.
doi: 10.1038/ncomms5884 pmid: 25208476 |
[69] |
Djukanovic V, Smith J, Lowe K, Yang MZ, Gao HR, Jones S, Nicholson MG, West A, Lape J, Bidney D, Carl Falco S, Jantz D, Alexander Lyznik L. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene ( MS26) using a re-designed I-CreI homing endonuclease. Plant J, 2013, 76(5):888-899.
doi: 10.1111/tpj.12335 |
[70] |
Qi XT, Zhang CS, Zhu JJ, Liu CL, Huang CL, Li XH, Xie CX. Genome editing enables next-generation hybrid seed production technology. Mol Plant, 2020, 13(9):1262-1269.
doi: 10.1016/j.molp.2020.06.003 |
[71] |
Chen ZW, Zhao N, Li SS, Grover CE, Nie HS, Wendel JF, Hua JP. Plant mitochondrial genome evolution and cytoplasmic male sterility. Critical Reviews in Plant Sciences, 2017, 36(1):55-69.
doi: 10.1080/07352689.2017.1327762 |
[72] |
Chen LT, Liu YG. Male sterility and fertility restoration in crops. Annu Rev Plant Biol, 2014, 65:579-606.
doi: 10.1146/arplant.2014.65.issue-1 |
[73] |
Dewey RE, Timothy DH, Levings CS. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA, 1987, 84(15):5374-5378.
doi: 10.1073/pnas.84.15.5374 |
[74] |
Wise RP, Schnable PS. Mapping complementary genes in maize: positioning therf1 and rf2 nuclear-fertility restorer loci of Texas (T) cytoplasm relative to RFLP and visible markers. Theor Appl Genet, 1994, 88(6-7):785-795.
doi: 10.1007/BF01253987 pmid: 24186179 |
[75] |
Wise RP, Dill CL, Schnable PS. Mutator-induced mutations of therf1 nuclear fertility restorer of T-cytoplasm maize alter the accumulation of T-urf13 mitochondrial transcripts. Genetics, 1996, 143(3):1383-1394.
doi: 10.1093/genetics/143.3.1383 pmid: 8807309 |
[76] |
Cui XQ, Wise RP, Schnable PS. Therf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science, 1996, 272(5266):1334-1336.
pmid: 8650543 |
[77] |
Liu F, Cui XQ, Horner HT, Weiner H, Schnable PS. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. Plant Cell, 2001, 13(5):1063-1078.
pmid: 11340182 |
[78] |
Liu F, Schnable PS. Functional specialization of maize mitochondrial aldehyde dehydrogenases. Plant Physiol, 2002, 130(4):1657-1674.
doi: 10.1104/pp.012336 |
[79] |
Dill CL, Wise RP, Schnable PS. Rf8 and Rf* mediate unique T-urf13-transcript accumulation, revealing a conserved motif associated with RNA processing and restoration of pollen fertility in T-cytoplasm maize. Genetics, 1997, 147(3):1367-1379.
doi: 10.1093/genetics/147.3.1367 pmid: 9383077 |
[80] |
Zabala G, Gabay-Laughnan S, Laughnan JR. The nuclear geneRf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics, 1997, 147(2):847-860.
doi: 10.1093/genetics/147.2.847 pmid: 9335619 |
[81] |
Wen LY, Chase CD. Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in male-fertile and S male-sterile maize. Curr Genet, 1999, 35(5):521-526.
pmid: 10369959 |
[82] |
Xiao HL, Zhang FD, Zheng YL. The 5' stem-loop and its role in mRNA stability in maize S cytoplasmic male sterility. Plant J, 2006, 47(6):864-872.
doi: 10.1111/tpj.2006.47.issue-6 |
[83] |
Gabay-Laughnan S, Kuzmin EV, Monroe J, Roark L, Newton KJ. Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize. Genetics, 2009, 182(1):91-103.
doi: 10.1534/genetics.108.099895 pmid: 19255365 |
[84] |
Zhang ZF, Wang Y, Zheng YL. AFLP and PCR-based markers linked toRf3, a fertility restorer gene for S cytoplasmic male sterility in maize. Mol Genet Genomics, 2006, 276(2):162-169.
pmid: 16705419 |
[85] |
Qin XE, Zhang WL, Dong X, Tian SK, Zhang PP, Zhao YX, Wang Y, Yan JB, Yue B. Identification of fertility-related genes for maize CMS-S via bulked segregant RNA-Seq. PeerJ, 2020, 8:e10015.
doi: 10.7717/peerj.10015 |
[86] |
Xiao SL, Zang J, Pei YR, Liu J, Liu J, Song W, Shi Z, Su AG, Zhao JR, Chen HB. Activation of mitochondrialorf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize. Mol Plant, 2020, 13(9):1270-1283.
doi: 10.1016/j.molp.2020.07.002 |
[87] |
Qin XE, Tian SK, Zhang WL, Zheng Q, Wang H, Feng Y, Lin YN, Tang JH, Wang Y, Yan JB, Dai MQ, Zheng YL, Yue B. The main restorerRf3 of maize S type cytoplasmic male sterility encodes a PPR protein that functions in reduction of the transcripts of orf355. Mol Plant, 2021, 14(12):1961-1964.
doi: 10.1016/j.molp.2021.10.001 |
[88] |
Dewey RE, Timothy DH, Levings CS. Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr Genet, 1991, 20(6):475-482.
pmid: 1664299 |
[89] | Tang JH, Liu ZH, Chen WC, Hu YM, Ji HQ, Ji LY, Xie HL, Huang XL. Mapping major restore genes for C-type cytoplasmic male sterility in maize with SSR marker. Agricultural Sciences in China, 2002, 1(3):269-273. |
[90] |
Hu YM, Tang JH, Yang H, Xie HL, Lu XM, Niu JH, Chen WC. Identification and mapping of Rf-I an inhibitor of the Rf5 restorer gene for CMS-C in maize(Zea mays L.). Theor Appl Genet, 2006, 113(2):357-360.
pmid: 16791701 |
[91] |
Jaqueth JS, Hou ZL, Zheng PZ, Ren RH, Nagel BA, Cutter G, Niu XM, Vollbrecht E, Greene TW, Kumpatla SP. Fertility restoration of maize CMS-C altered by a single amino acid substitution within theRf4 bHLH transcription factor. Plant J, 2020, 101(1):101-111.
doi: 10.1111/tpj.v101.1 |
[92] |
Liu YM, Zhao ZF, Lu YL, Li C, Wang J, Dong BX, Liang B, Qiu T, Zeng WB, Cao MJ. A preliminary identification of Rf*-A619, a novel restorer gene for CMS-C in maize(Zea mays L.). PeerJ, 2016, 4:e2719.
doi: 10.7717/peerj.2719 |
[93] |
Kohls S, Stamp P, Knaak C, Messmer R. QTL involved in the partial restoration of male fertility of C-type cytoplasmic male sterility in maize. Theor Appl Genet, 2011, 123(2):327-338.
doi: 10.1007/s00122-011-1586-8 |
[94] |
Zheng MM, Yang T, Liu XW, Lü GH, Zhang P, Jiang B, Zhou SF, Lu YL, Lan H, Zhang SZ, Li C, Rong TZ, Cao MJ. qRf8-1, a novel QTL for the fertility restoration of maize CMS-C identified by QTL-seq. G3 (Bethesda), 2020, 10(7):2457-2464.
doi: 10.1534/g3.120.401192 |
[95] | Zhao ZF, Huang L, Liu YM, Zhang P, Wei G, Cao MJ. Genetics of fertility restoration in the isocytoplasm allonuclear C-group of cytoplasmic male sterility in maize. Hereditas(Beijing), 2018, 40(5):402-414. |
赵卓凡, 黄玲, 刘永明, 张鹏, 魏桂, 曹墨菊. 玉米CMS-C 同质异核不育系育性恢复的遗传研究. 遗传, 2018, 40(5):402-414. | |
[96] |
Mou BT, Zhao ZF, Yue L, Li C, Zhang J, Li ZB, Shen H, Cao MJ. Identification of fertility restoration and molecular mapping of restorer genes in two maize restore lines of CMS-C. Acta Agron Sin, 2019, 45(2):225-234.
doi: 10.3724/SP.J.1006.2019.83033 |
牟碧涛, 赵卓凡, 岳灵, 李川, 张钧, 李章波, 申汉, 曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位. 作物学报, 2019, 45(2):225-234.
doi: 10.3724/SP.J.1006.2019.83033 |
|
[97] |
Zhang HS, Yang HL, Hu DS, Li B, Lin YN, Yao W, Guo ZY, Li HC, Ding D, Zhang ZH, Hu YM, Xue YD, Tang JH. Single-cell RNA sequencing of meiocytes and microspores reveals the involvement of theRf4 gene in redox homeostasis of CMS-C maize. The Crop Journal, 2021, 9(6):1237-1247.
doi: 10.1016/j.cj.2021.06.012 |
[98] |
Wang DX, Skibbe DS, Walbot V. Maize Male sterile 8 (Ms8), a putative β-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. Plant Reprod, 2013, 26(4):329-338.
doi: 10.1007/s00497-013-0230-y |
[99] | Albertsen MC, Fox TW, Leonard AL, Li BL, Loveland BR, Trimnell M. Cloning and use of the ms9 gene from maize. US patent US20160024520A1, 2016. |
[100] |
Chaubal R, Anderson JR, Trimnell MR, Fox TW, Albertsen MC, Bedinger P. The transformation of anthers in the msca1 mutant of maize. Planta, 2003, 216(5):778-788.
pmid: 12624765 |
[101] | Albertsen MC, Fox T, Trimnell M, Wu YZ, Lowe K, Li BL, Faller M. Msca1 nucleotide sequences impacting plant male fertility and method of using same. US patent US20090038027A1, 2009. |
[102] | Nan GL, Zhai JX, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers BC, Walbot V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017, 144(1):163-172. |
[103] |
Moon J, Skibbe D, Timofejeva L, Wang CJR, Kelliher T, Kremling K, Walbot V, Cande WZ. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J, 2013, 76(4):592-602.
doi: 10.1111/tpj.2013.76.issue-4 |
[104] |
Zhu TT, Li ZW, An XL, Long Y, Xue XF, Xie K, Ma B, Zhang DF, Guan YJ, Niu CF, Dong ZY, Hou QC, Zhao LN, Wu SW, Li JP, Jin WW, Wan XY. Normal structure and function of endothecium chloroplasts maintained by ZmMs33-mediated lipid biosynthesis in tapetal cells are critical for anther development in maize. Mol Plant, 2020, 13(11):1624-1643.
doi: 10.1016/j.molp.2020.09.013 |
[105] |
Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li BL, Scolaro E, Collinson S, Glassman K, Miller M, Schussler J, Dolan D, Liu L, Gho C, Albertsen M, Loussaert D, Shen B. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15(8):942-952.
doi: 10.1111/pbi.2017.15.issue-8 |
[106] |
Cigan AM, Unger E, Xu RJ, Kendall T, Fox TW. Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod, 2001, 14:135-142.
doi: 10.1007/s004970100099 |
[107] |
Wang CJR, Nan GL, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya IN, Harper L, Egger R, Walbot V, Cande WZ. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development, 2012, 139(14):2594-2603.
doi: 10.1242/dev.077891 |
[108] |
Evans MMS. The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell, 2007, 19(1):46-62.
doi: 10.1105/tpc.106.047506 |
[109] |
Vernoud V, Laigle G, Rozier F, Meeley RB, Perez P, Rogowsky PM. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J, 2009, 59(6):883-894.
doi: 10.1111/tpj.2009.59.issue-6 |
[110] |
Yadava P, Tamim S, Zhang H, Teng C, Zhou X, Meyers BC, Walbot V. Transgenerational conditioned male fertility of HD-ZIP IV transcription factor mutantocl4: impact on 21-nt phasiRNA accumulation in pre-meiotic maize anthers. Plant Reprod, 2021, 34(2):117-129.
doi: 10.1007/s00497-021-00406-3 |
[111] |
Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V. Dicer-like 5 deficiency confers temperature- sensitive male sterility in maize. Nat Commun, 2020, 11(1):2912.
doi: 10.1038/s41467-020-16634-6 |
[112] |
Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM. The evolution and diversification of Dicers in plants. FEBS Lett, 2006, 580(10):2442-2450.
doi: 10.1016/j.febslet.2006.03.072 |
[113] |
Zhai JX, Zhang H, Arikit S, Huang K, Nan GL, Walbot V, Meyers BC. Spatiotemporally dynamic, cell-type- dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci USA, 2015, 112(10):3146-3151.
doi: 10.1073/pnas.1418918112 |
[114] |
Nonomura KI. Small RNA pathways responsible for non-cell-autonomous regulation of plant reproduction. Plant Reprod, 2018, 31(1):21-29.
doi: 10.1007/s00497-018-0321-x |
[115] |
Ono S, Liu H, Tsuda K, Fukai E, Tanaka K, Sasaki T, Nonomura KI. EAT1 transcription factor, a non-cell- autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. PLoS Genet, 2018, 14(2):e1007238.
doi: 10.1371/journal.pgen.1007238 |
[116] | 刘纪麟. 玉米育种学. 北京: 农业出版社, 1991, 383. |
[117] |
Darrah LL, Zuber MS. 1985 United States farm maize germplasm base and commercial breeding strategies. Crop Science, 1986, 26(6):1109-1113.
doi: 10.2135/cropsci1986.0011183X002600060004x |
[118] | 陈国平. 美国玉米生产及考察后的反思. 作物杂志, 1992, 8(2):1-4. |
[119] | Shi ML, Chen QG, Peng CJ, Sun QX, Cheng YJ, Xue L, Lu HH, Huang XL, Hao DR, Mao YX, Hu JR, Chen XH. Study on type, heredity mechanism and trends of breeding utilization method in male sterility of maize (Zea mays L.). Journal of Tianjin Agricultural College, 2013, 20(1):21-27. |
石明亮, 陈国清, 彭长俊, 孙权星, 程玉静, 薛林, 陆虎华, 黄小兰, 郝德荣, 冒宇翔, 胡加如, 陈小晖. 玉米雄性不育类型、遗传机理及育种利用方法研究动态. 天津农学院学报, 2013, 20(1):21-27. | |
[120] | 侯玮, 陈举林, 王国胜, 闫保罗, 李平海. 细胞质雄性不育在玉米育种及生产中的应用概述. 安徽农学通报, 2011, 17(1):64-66. |
[121] | Ma CH, Li JY, Cui CX, Hao GQ, Zheng JD, Chen X, Li GM. Progress and analysis of CMS in maize. Journal of Maize Sciences, 2006, 14(1):46-49. |
马春红, 李九云, 翟彩霞, 郝桂琴, 郑积德, 陈霞, 李广敏. 玉米细胞质雄性不育(CMS)的研究进展及分析. 玉米科学, 2006, 14(1):46-49. | |
[122] | Deng YH, Zhou HS. The utilization of genic-male sterility genes in maize. Maize Science, 1998, 6(2):1-5. |
邓迎海, 周洪生. 玉米雄性不育基因的利用. 玉米科学, 1998, 6(2):1-5. | |
[123] | Jia JZ, Li Y. Plant genomics and gene discovery in germplasm resources. Sci Agric Sin, 2004, 37(11):1585-1592. |
[1] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[2] | 陈欲, 陈笑芸, 彭城, 徐俊锋, 沈洁, 李玥莹, 汪小福. 转基因玉米双抗12-5荧光RPA现场可视化检测方法的建立[J]. 遗传, 2021, 43(8): 802-812. |
[3] | 单婷玉, 施雯, 王翌婷, 曹孜怡, 汪保华, 方辉. 玉米盐胁迫相关性状全基因组关联分析及候选基因预测[J]. 遗传, 2021, 43(12): 1159-1169. |
[4] | 葛婷婷, 袁露, 徐文华, 郑英. 哺乳动物纤毛/鞭毛内运输在精子形成中的作用及机制研究进展[J]. 遗传, 2021, 43(11): 1038-1049. |
[5] | 孙小媛, 王一帆, 王韫慧, 蔺佳雨, 李金红, 丘远涛, 方小龙, 孔凡江, 李美娜. 大豆细胞核雄性不育基因研究进展[J]. 遗传, 2021, 43(1): 52-65. |
[6] | 陈会友, 张建敏, 李柏森, 邓永琳, 张龚炜. 犏牛雄性不育的减数分裂基因表达与表观遗传调控研究进展[J]. 遗传, 2020, 42(11): 1081-1092. |
[7] | 谢勇尧,汤金涛,杨博文,胡骏,刘耀光,陈乐天. 水稻育性调控的分子遗传研究进展[J]. 遗传, 2019, 41(8): 703-715. |
[8] | 汪德州,莫晓婷,张霞,徐妙云,赵军,王磊. 玉米逆境响应相关转录因子ZmC2H2-1基因克隆及功能验证[J]. 遗传, 2018, 40(9): 767-778. |
[9] | 赵卓凡, 黄玲, 刘永明, 张鹏, 魏桂, 曹墨菊. 玉米CMS-C同质异核不育系育性恢复的遗传研究[J]. 遗传, 2018, 40(5): 402-414. |
[10] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
[11] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
[12] | 尹朝华, 李岩, 张春庆, 杨翠翠, 吴承来, 刘翔攀, 王明明. 玉米脱氧麦根酸分泌通道蛋白基因YS3启动子的克隆与启动活性分析[J]. 遗传, 2016, 38(6): 560-568. |
[13] | 储黄伟, 牛付安, 程灿, 周继华, 王新其, 罗小金, 袁勤, 曹黎明. 杂交粳稻花优14及其亲本孕穗期剑叶的基因表达谱芯片分析[J]. 遗传, 2015, 37(9): 932-938. |
[14] | 刘永明, 张玲, 周建瑜, 曹墨菊. 植物细胞核雄性不育相关bHLH转录因子研究进展[J]. 遗传, 2015, 37(12): 1194-1203. |
[15] | 赵雄伟, 林海建, 张志明, 沈亚欧, 潘光堂. 玉米籽粒重金属铅(Pb2+)含量的QTL定位[J]. 遗传, 2014, 36(8): 821-826. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: