遗传 ›› 2024, Vol. 46 ›› Issue (9): 690-700.doi: 10.16288/j.yczz.24-155
收稿日期:
2024-05-31
修回日期:
2024-07-15
出版日期:
2024-09-20
发布日期:
2024-08-15
通讯作者:
唐湘方,博士,研究员,博士生导师,研究方向:反刍动物营养与智慧畜牧业装备开发。E-mail: xiangfangtang@163.com作者简介:
潘东霞,硕士研究生,专业方向:智慧畜牧装备研究。E-mail: pandongxia1117@163.com
基金资助:
Dongxia Pan(), Hui Wang, Benhai Xiong, Xiangfang Tang(
)
Received:
2024-05-31
Revised:
2024-07-15
Published:
2024-09-20
Online:
2024-08-15
Supported by:
摘要:
基因编辑是一种能够进行基因组修饰的基因工程技术。近年来,随着分子生物学技术的飞速发展,成簇规则间隔短回文重复序列相关蛋白系统(clustered regularly interspaced short palindromic repeats associated protein,CRISPR-Cas)作为新发展起来的一种强大的基因编辑工具,因具有高效性、精确性和灵活性而被广泛应用。CRISPR-Cas系统通过在特定基因组位点引入插入、缺失或单碱基替换等方式实现位点的特异性修饰,在畜牧生产的诸多领域做出了重大贡献。在羊生产应用方面,通过建立改善生产经济性状和抗病性的绵山羊动物模型,可以对关键基因的功能进行研究,从而加速性状的改良。本文主要综述了CRISPR-Cas系统的机制与功能及其在羊繁殖性状、肉用性状、产毛性状、泌乳性状和抗病性状生产应用与创建羊动物模型方面的研究进展。
潘东霞, 王辉, 熊本海, 唐湘方. CRISPR-Cas基因编辑技术在羊生产应用中研究进展[J]. 遗传, 2024, 46(9): 690-700.
Dongxia Pan, Hui Wang, Benhai Xiong, Xiangfang Tang. Progress on CRISPR-Cas gene editing technology in sheep production[J]. Hereditas(Beijing), 2024, 46(9): 690-700.
表1
Cas9和Cas12核酸酶特性"
特性 | Cas核酸酶 | ||||
---|---|---|---|---|---|
Cas9 | Cas9n | dCas9 | Cas12a (Cpf1) | Cas12b (C2c1) | |
CRISPR-Cas系统分类 | 2类II-A型 | 2类II-A型 | 2类II-A型 | 2类V-A型 | 2类V-B型 |
核酸酶结构域 | HNH和RuvC | HNH或RuvC | 无 | RuvC | RuvC |
PAM | NGG/NAG/NGA | NGG | NGG | (T)TTN | TTN |
引导RNA | tracrRNA+crRNA (~120 nt) | tracrRNA+crRNA (~120 nt) | tracrRNA+crRNA (~120 nt) | crRNA (40~44 nt) | tracrRNA+crRNA (~120 nt) |
靶向目标 | dsDNA | dsDNA | dsDNA | ds/ssDNA | ds/ssDNA |
反式切割活性 | ssDNA/ssRNA | ssDNA/ssRNA | 无 | ssDNA | ssDNA |
[1] |
Huang S, Yan YL, Su F, Huang XR, Xia DD, Jiang XX, Dong YH, Lv P, Chen FY, Lv YW. Research progress in gene editing technology. Front Biosci (Landmark Ed), 2021, 26(10): 916-927.
doi: 10.52586/4997 pmid: 34719215 |
[2] |
Vicencio J, Cerón J. A living organism in your CRISPR toolbox: caenorhabditis elegans is a rapid and efficient model for developing CRISPR-Cas technologies. CRISPR J, 2021, 4(1): 32-42.
doi: 10.1089/crispr.2020.0103 pmid: 33538637 |
[3] | Liu HJ, Jian LM, Xu JT, Zhang QH, Zhang ML, Jin ML, Peng Y, Yan JL, Han BZ, Liu J, Gao F, Liu XG, Huang L, Wei WJ, Ding YX, Yang XF, Li ZX, Zhang ML, Sun JM, Bai MJ, Song WH, Chen HM, Sun XA, Li WQ, Lu YM, Liu Y, Zhao JR, Qian YW, Jackson D, Fernie AR, Yan JB. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell, 2020, 32(5): 1397-1413. |
[4] |
Bak RO, Gomez-Ospina N, Porteus MH. Gene editing on center stage. Trends Genet, 2018, 34(8): 600-611.
doi: S0168-9525(18)30089-1 pmid: 29908711 |
[5] | Liu Y, Xiong YZ, Cai ZZ, Zhang B. Development and challenges of gene editing technology. Chin J Biotechnol, 2019, 35(8): 1401-1410. |
[6] |
Zhang Y, Massel K, Godwin ID, Gao CX. Correction to: applications and potential of genome editing in crop improvement. Genome Biol, 2019, 20(1): 13.
doi: 10.1186/s13059-019-1622-6 pmid: 30651124 |
[7] | Li C, Brant E, Budak H, Zhang BH. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ Sci B, 2021, 22(4): 253-284. |
[8] |
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987, 169(12): 5429-5433.
doi: 10.1128/jb.169.12.5429-5433.1987 pmid: 3316184 |
[9] |
Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol, 2010, 70: 217-248.
doi: 10.1016/S0065-2164(10)70007-1 pmid: 20359459 |
[10] |
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962): 167-170.
doi: 10.1126/science.1179555 pmid: 20056882 |
[11] |
Jansen R, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 43(6): 1565-1575.
doi: 10.1046/j.1365-2958.2002.02839.x pmid: 11952905 |
[12] |
Wang L, Mo CY, Wasserman MR, Rostøl JT, Marraffini LA, Liu SX. Dynamics of Cas10 govern discrimination between self and non-self in type III CRISPR-Cas immunity. Mol Cell, 2019, 73(2): 278-290.e4.
doi: S1097-2765(18)30978-X pmid: 30503774 |
[13] |
Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun, 2018, 9(1): 1911.
doi: 10.1038/s41467-018-04252-2 pmid: 29765029 |
[14] | Wang MY, Wang HQ, Li K, Li XM, Wang XJ, Wang ZX. Review of CRISPR/Cas systems on detection of nucleotide sequences. Foods, 2023, 12(3): 477-495. |
[15] |
Sashital DG. Pathogen detection in the CRISPR-Cas era. Genome Med, 2018, 10(1): 32.
doi: 10.1186/s13073-018-0543-4 pmid: 29690921 |
[16] | Wang M, Zhang R, Li JM. CRISPR/cas systems redefine nucleic acid detection: principles and methods. Biosens Bioelectron, 2020, 165: 112430. |
[17] |
Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5): 935-949.
doi: 10.1016/j.cell.2014.02.001 pmid: 24529477 |
[18] | Chen JY, Chen Y, Huang LL, Lin XF, Chen H, Xiang WW, Liu L. Trans-nuclease activity of Cas9 activated by DNA or RNA target binding. Nat Biotechnol, 2024, doi: 10.1038/s41587-024-02255-7. |
[19] |
Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
doi: 10.1126/science.1231143 pmid: 23287718 |
[20] |
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.
doi: 10.1016/j.cell.2013.02.022 pmid: 23452860 |
[21] | Chen JS, Ma EB, Harrington LB, Da Costa M, Tian XR, Palefsky JM, Doudna JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387): 436-439. |
[22] |
Qiu XY, Liu CY, Zhu CS, Zhu LY. MicroRNA detection with CRISPR/Cas. Methods Mol Biol, 2023, 2630: 25-45.
doi: 10.1007/978-1-0716-2982-6_3 pmid: 36689174 |
[23] |
Li Y, Li SY, Wang J, Liu GZ. CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol, 2019, 37(7): 730-743.
doi: S0167-7799(18)30360-3 pmid: 30654914 |
[24] |
Hong Y, Lu GQ, Duan JZ, Liu WJ, Zhang Y. Comparison and optimization of CRISPR/dCas9/gRNA genome-labeling systems for live cell imaging. Genome Biol, 2018, 19(1): 39.
doi: 10.1186/s13059-018-1413-5 pmid: 29566733 |
[25] | Richardson C, Kelsh RN, Richardson RJ. New advances in CRISPR/Cas-mediated precise gene-editing techniques. Dis Model Mech, 2023, 16(2): dmm049874. |
[26] | Xu X, Liu MJ. Research progress on application of CRISPR/Cas9 genome editing systems in sheep. China Anim Husb Vet Med, 2022, 49(11): 4129-4138. |
徐鑫, 刘明军. CRISPR/Cas9基因编辑技术在绵羊中的应用研究进展. 中国畜牧兽医, 2022, 49(11): 4129-4138. | |
[27] | Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol, 2017, 18(8): 495-506. |
[28] | Zaboikin M, Zaboikina T, Freter C, Srinivasakumar N. Non-homologous end joining and homology directed DNA repair frequency of double-stranded breaks introduced by genome editing reagents. PLoS One, 2017, 12(1): e0169931. |
[29] |
Wang R, Zhang JY, Lu KH, Lu SS, Zhu XX. Efficient generation of GHR knockout Bama minipig fibroblast cells using CRISPR/Cas9-mediated gene editing. In Vitro Cell Dev Biol Anim, 2019, 55(10): 784-792.
doi: 10.1007/s11626-019-00397-6 pmid: 31456163 |
[30] |
Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res, 2019, 47(W1): W171-W174.
doi: 10.1093/nar/gkz365 |
[31] | Kroll F, Powell GT, Ghosh M, Gestri G, Antinucci P, Hearn TJ, Tunbak H, Lim S, Dennis HW, Fernandez JM, Whitmore D, Dreosti E, Wilson SW, Hoffman EJ, Rihel J. A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. eLife, 2021, 10: e59683. |
[32] | Bae HS, Jin YK, Ham S, Kim HK, Shin H, Cho GB, Lee KJ, Lee H, Kim KM, Koo OJ, Jang G, Lee JM, Lee JY. CRISRP/Cas9-mediated knockout of Mct8 reveals a functional involvement of Mct8 in testis and sperm development in a rat. Sci Rep, 2020, 10(1): 11148. |
[33] | Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med, 2018, 215(3): 985-997. |
[34] | Ranawakage DC, Okada K, Sugio K, Kawaguchi Y, Kuninobu-Bonkohara Y, Takada T, Kamachi Y. Efficient CRISPR-Cas9-mediated knock-in of composite tags in zebrafish using long ssDNA as a donor. Front Cell Dev Biol, 2021, 8: 598634. |
[35] | Yan XM, Li WZ, Gong G, Yan XC, Su YX, Zhang LD, Zhang JX, Su R. Research progress in application of CRISPR/Cas9 gene editing technology in functional gene verification in sheep breeding. Heilongjiang Anim Sci Vet Med, 2024(1): 29-35+53. |
闫晓敏, 李文泽, 龚高, 严晓春, 苏奕忻, 张露丹, 张嘉欣, 苏蕊. CRISPR/Cas9基因编辑技术在羊育种功能基因验证中的应用研究进展. 黑龙江畜牧兽医, 2024(1): 29-35+53. | |
[36] |
Liang Z, Chen KL, Yan Y, Zhang Y, Gao CX. Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnol J, 2018, 16(12): 2053-2062.
doi: 10.1111/pbi.12938 pmid: 29723918 |
[37] | Liu NN, Zuo XC, Pi WH. A feasibility study of using Cas9 ribonucleoproteins for genotyping of FecB in sheep. Heilongjiang J Anim Reprod, 2023, 31(1): 20-25. |
刘楠楠, 左昕晨, 皮文辉. 应用Cas9 RNPs进行绵羊FecB基因型检测的可行性研究. 黑龙江动物繁殖, 2023, 31(1): 20-25. | |
[38] | Wu TJ, Sun JY, Lu LJ, Wang C, Zhou SW, Chen YL, Wang XJ, Wang XL. Rapid on-site genotyping of the ovine prolific FecBB mutation using a CRISPR/Cas12a-based detection system. J Integr Agric, 2024, doi: 10.1016/j.jia.2024.05.013. |
[39] | Yoshimatsu S, Sato T, Yamamoto M, Sasaki E, Nakajima M, Nakamura M, Shiozawa S, Noce T, Okano H. Generation of a male common marmoset embryonic stem cell line DSY127-BV8VT1 carrying double reporters specific for the germ cell linage using the CRISPR-Cas9 and PiggyBac transposase systems. Stem Cell Res, 2020, 44: 101740. |
[40] | Yang H, Deng MT, Lv WL, Wei ZY, Cai Y, Cheng PY, Wang F, Zhang YL. Overexpression of bmp4, dazl, nanos3 and sycp2 in Hu sheep leydig cells using CRISPR/dcas9 system promoted male germ cell related gene expression. Biology (Basel), 2022, 11(2): 289. |
[41] | Zhang XM, Li WR, Wu YS, Peng XR, Lou B, Wang LQ, Liu MJ. Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos. Theriogenology, 2017, 91: 163-172.e2. |
[42] |
Souza CJH, McNeilly AS, Benavides MV, Melo EO, Moraes JCF. Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Anim Genet, 2014, 45(5): 732-739.
doi: 10.1111/age.12190 pmid: 25039891 |
[43] | Niu YY, Zhao XE, Zhou JK, Li Y, Huang Y, Cai B, Liu YT, Ding Q, Zhou SW, Zhao J, Zhou GX, Ma BH, Huang XX, Wang XL, Chen YL. Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9. Reprod Fertil Dev, 2018, 30(2): 307-312. |
[44] | Zhou SW, Yu HH, Zhao XE, Cai B, Ding Q, Huang Y, Li YX, Li Y, Niu YY, Lei AM, Kou QF, Huang XX, Petersen B, Ma BH, Chen YL, Wang XL. Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reprod Fertil Dev, 2018, 30(12): 1616-1621. |
[45] | Luo Q. Generation of CRISPR-mediated TBXT and FecB gene editing in Tan sheep[Dissertation]. Northwest A&F Universit, 2022. |
罗琪. CRISPR技术介导的TBXT和FecB基因编辑滩羊的制备[学位论文]. 西北农林科技大学, 2022. | |
[46] |
Tellam RL, Cockett NE, Vuocolo T, Bidwell CA. Genes contributing to genetic variation of muscling in sheep. Front Genet, 2012, 3: 164.
doi: 10.3389/fgene.2012.00164 pmid: 22952470 |
[47] |
Boman IA, Klemetsdal G, Nafstad O, Blichfeldt T, Våge DI. Selection based on progeny testing induces rapid changes in myostatin allele frequencies - a case study in sheep. J Anim Breed Genet, 2011, 128(1): 52-55.
doi: 10.1111/j.1439-0388.2010.00879.x pmid: 21214644 |
[48] |
Zhou SW, Kalds P, Luo Q, Sun KX, Zhao XE, Gao YW, Cai B, Huang SH, Kou QF, Petersen B, Chen YL, Ma BH, Wang XL. Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality. BMC Genomics, 2022, 23(1): 348.
doi: 10.1186/s12864-022-08594-6 pmid: 35524183 |
[49] |
Wang XL, Niu YY, Zhou JK, Yu HH, Kou QF, Lei AM, Zhao XE, Yan HL, Cai B, Shen QY, Zhou SW, Zhu HJ, Zhou GX, Niu WZ, Hua JL, Jiang Y, Huang XX, Ma BH, Chen YL. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci Rep, 2016, 6: 32271.
doi: 10.1038/srep32271 pmid: 27562433 |
[50] |
Wang KK, Ouyang HS, Xie ZC, Yao CG, Guo NN, Li MJ, Jiao HP, Pang DX. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep, 2015, 5: 16623.
doi: 10.1038/srep16623 pmid: 26564781 |
[51] | Guo RH, Wang HL, Meng CH, Gui HB, Li YX, Chen F, Zhang CJ, Zhang H, Ding Q, Zhang JL, Zhang J, Qian Y, Zhong JF, Cao SX. Efficient and specific generation of MSTN-edited Hu sheep using C-CRISPR. Genes (Basel), 2023, 14(6): 1216. |
[52] | Li WR, Liu CX, Zhang XM, Chen L, Peng XR, He SG, Lin JP, Han B, Wang LQ, Huang JC, Liu MJ. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep. FEBS J, 2017, 284(17): 2764-2773. |
[53] |
Zhang R, Wu HP, Lian ZX. Bioinformatics analysis of evolutionary characteristics and biochemical structure of FGF5 gene in sheep. Gene, 2019, 702: 123-132.
doi: S0378-1119(19)30297-5 pmid: 30926307 |
[54] | Xiang B, Li YM, Li JP, Li JY, Jiang HZ, Zhang QL. MiR-19 3b regulated the formation of coat colors by targeting WNT10A and GNAI2 in Cashmere goats. Anim Biotechnol, 2023, 34(4): 796-804. |
[55] | Zhang XM, Li WR, Liu CX, Peng XR, Lin JP, He SG, Li XJ, Han B, Zhang N, Wu YS, Chen L, Wang LQ, MaYila, Huang JC, Liu MJ. Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Sci Rep, 2017, 7(1): 8149. |
[56] | Hao F, Yan W, Li XC, Wang H, Wang YM, Hu X, Liu X, Liang H, Liu DJ. Generation of cashmere goats carrying an EDAR gene mutant using CRISPR-Cas9-mediated genome editing. Int J Biol Sci, 2018, 14(4): 427-436. |
[57] |
Li GW, Zhou SW, Li C, Cai B, Yu HH, Ma BH, Huang Y, Ding YG, Liu Y, Ding Q, He C, Zhou JK, Wang Y, Zhou GX, Li Y, Yan Y, Hua JL, Petersen B, Jiang Y, Sonstegard T, Huang XX, Chen YL, Wang XL. Base pair editing in goat: nonsense codon introgression into FGF5 results in longer hair. FEBS J, 2019, 286(23): 4675-4692.
doi: 10.1111/febs.14983 pmid: 31276295 |
[58] |
Clark S, Mora García MB. A 100-year review: advances in goat milk research. J Dairy Sci, 2017, 100(12): 10026-10044.
doi: S0022-0302(17)31050-0 pmid: 29153153 |
[59] | Sharma S, Kumar P, Betzel C, Singh TP. Structure and function of proteins involved in milk allergies. J Chromatogr B Biomed Sci Appl, 2001, 756(1-2): 183- 187. |
[60] | Sélo I, Négroni L, Créminon C, Yvon M, Peltre G, Wal JM. Allergy to bovine beta-lactoglobulin: specificity of human IgE using cyanogen bromide-derived peptides. Int Arch Allergy Immunol, 1998, 117(1): 20-28. |
[61] | Zhou WJ, Wan YJ, Guo RH, Deng MT, Deng KP, Wang Z, Zhang YL, Wang F. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9.PLoS One, 2017, 12(10): e0186056. |
[62] |
Wu MM, Wei CH, Lian ZX, Liu RZ, Zhu CY, Wang HH, Cao JX, Shen YL, Zhao FP, Zhang L, Mu Z, Wang YY, Wang XG, Du LX, Wang CD. Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system. Sci Rep, 2016, 6: 24360.
doi: 10.1038/srep24360 pmid: 27063570 |
[63] |
Liu H, Liu C, Zhao YH, Han XJ, Zhou ZW, Wang C, Li RF, Li XL. Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts. J Integr Agric, 2018, 17(2): 406-414.
doi: 10.1016/S2095-3119(17)61748-9 |
[64] | Li QH, Wang F, Wang Q, Zhang N, Zheng JM, Zheng MQ, Liu RR, Cui HX, Wen J, Zhao GP. SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response. PLoS Pathog, 2020, 16(5): e1008188. |
[65] |
Proudfoot C, Lillico S, Tait-Burkard C. Genome editing for disease resistance in pigs and chickens. Anim Front, 2019, 9(3): 6-12.
doi: 10.1093/af/vfz013 pmid: 32002257 |
[66] |
Yu GH, Chen JQ, Yu HQ, Liu SG, Chen J, Xu XJ, Sha HY, Zhang XF, Wu GX, Xu SF, Cheng GX. Functional disruption of the prion protein gene in cloned goats. J Gen Virol, 2006, 87(Pt 4): 1019-1027.
doi: 10.1099/vir.0.81384-0 pmid: 16528053 |
[67] |
Golding MC, Long CR, Carmell MA, Hannon GJ, Westhusin ME. Suppression of prion protein in livestock by RNA interference. Proc Natl Acad Sci USA, 2006, 103(14): 5285-5290.
pmid: 16567624 |
[68] |
Fan ZQ, Yang M, Regouski M, Polejaeva IA. Gene knockouts in goats using CRISPR/Cas9 system and somatic cell nuclear transfer. Methods Mol Biol, 2019, 1874: 373-390.
doi: 10.1007/978-1-4939-8831-0_22 pmid: 30353526 |
[69] | Zhao J, Xu SRGL, Li HP, Liu SY. Malignant transformation of sheep trophoblast cells induced by envelope protein of Jaagsiekte sheep retrovirus. Acta Vet Zootech Sin, 2018, 49(5): 1089-1095. |
赵娟, 徐斯日古楞, 李慧萍, 刘淑英. 绵羊肺腺瘤病毒囊膜蛋白引起绵羊绒毛膜滋养层细胞的恶性转化. 畜牧兽医学报, 2018, 49(5): 1089-1095. | |
[70] | Abstracts from the UC Davis Transgenic Animal Research Conference XI: August 13-17, 2017. Transgenic Res, 2018, 27(5): 467-487. |
[71] | Ni W, Qiao J, Hu SW, Zhao XX, Regouski M, Yang M, Polejaeva IA, Chen CF. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One, 2014, 9(9): e106718. |
[72] | Lin YQ, Li J, Li CJ, Tu ZC, Li SH, Li XJ, Yan S. Application of CRISPR/Cas9 system in establishing large animal models. Front Cell Dev Biol, 2022, 10: 919155. |
[73] |
Teng F, Cui TT, Feng GH, Guo L, Xu K, Gao QQ, Li TD, Li J, Zhou Q, Li W. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov, 2018, 4: 63.
doi: 10.1038/s41421-018-0069-3 pmid: 30510770 |
[74] | Li WJ, Shi L, Zhuang ZP, Wu H, Lian M, Chen YH, Li L, Ge WK, Jin Q, Zhang QJ, Zhao Y, Liu ZM, Ouyang Z, Ye YH, Li YY, Wang H, Liao Y, Quan LQ, Xiao L, Lai LX, Meng GX, Wang KP. Correction: engineered pigs carrying a gain-of-function NLRP3 homozygous mutation can survive to adulthood and accurately recapitulate human systemic spontaneous inflammatory responses. J Immunol, 2021, 207(9): 2385-2386. |
[75] |
Eaton SL, Proudfoot C, Lillico SG, Skehel P, Kline RA, Hamer K, Rzechorzek NM, Clutton E, Gregson R, King T, O'Neill CA, Cooper JD, Thompson G, Whitelaw CB, Wishart TM. CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease). Sci Rep, 2019, 9(1): 9891.
doi: 10.1038/s41598-019-45859-9 pmid: 31289301 |
[76] |
Williams DK, Pinzón C, Huggins S, Pryor JH, Falck A, Herman F, Oldeschulte J, Chavez MB, Foster BL, White SH, Westhusin ME, Suva LJ, Long CR, Gaddy D. Genetic engineering a large animal model of human hypophosphatasia in sheep. Sci Rep, 2018, 8(1): 16945.
doi: 10.1038/s41598-018-35079-y pmid: 30446691 |
[77] |
Crispo M, Chenouard V, Dos Santos-Neto P, Tesson L, Souza-Neves M, Heslan JM, Cuadro F, Anegón I, Menchaca A. Generation of a human deafness sheep model using the CRISPR/Cas system. Methods Mol Biol, 2022, 2495: 233-244.
doi: 10.1007/978-1-0716-2301-5_12 pmid: 35696036 |
[78] |
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin LL. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res, 2016, 61(3): 253-278.
doi: 10.1111/jpi.12360 pmid: 27500468 |
[79] | Ma T, Tao JL, Yang MH, He CJ, Tian XZ, Zhang XS, Zhang JL, Deng SL, Feng JZ, Zhang ZZ, Wang J, Ji PY, Song YK, He PL, Han HB, Fu JC, Lian ZX, Liu GS. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep. J Pineal Res, 2017, 63(1): e12406. |
[80] |
Kalds P, Zhou SW, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang XL, Chen YL. Sheep and goat genome engineering: from random transgenesis to the CRISPR era. Front Genet, 2019, 10: 750.
doi: 10.3389/fgene.2019.00750 pmid: 31552084 |
[81] |
Yang YH, Wang DD, Lü P, Ma SS, Chen KP. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system. Mol Biol Rep, 2023, 50(4): 3723-3738.
doi: 10.1007/s11033-023-08240-8 pmid: 36648696 |
[82] |
Yin JH, Liu MZ, Liu Y, Wu JC, Gan TT, Zhang WW, Li YH, Zhou YX, Hu JZ. Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discov, 2019, 5: 18.
doi: 10.1038/s41421-019-0088-8 pmid: 30937179 |
[83] |
Raza SHA, Hassanin AA, Pant SD, Bing S, Sitohy MZ, Abdelnour SA, Alotaibi MA, Al-Hazani TM, Abd El-Aziz AH, Cheng G, Zan LS. Potentials, prospects and applications of genome editing technologies in livestock production. Saudi J Biol Sci, 2022, 29(4): 1928-1935.
doi: 10.1016/j.sjbs.2021.11.037 pmid: 35531207 |
[84] | Modrzejewski D, Hartung F, Lehnert H, Sprink T, Kohl C, Keilwagen J, Wilhelm R. Which factors affect the occurrence of off-target effects caused by the use of CRISPR/Cas: a systematic review in plants. Front Plant Sci, 2020, 11: 574959. |
[85] | Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang XL, Jin SX. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci (Weinh), 2020, 7(6): 1902312. |
[86] | Zhang YG, Arango G, Li F, Xiao X, Putatunda R, Yu J, Yang XF, Wang H, Watson LT, Zhang LQ, Hu WH. Comprehensive off-target analysis of dCas9-SAM- mediated HIV reactivation via long noncoding RNA and mRNA profiling. BMC Med Genomics, 2018, 11(1): 78. |
[87] |
Menchaca A, Dos Santos-Neto PC, Mulet AP, Crispo M. CRISPR in livestock: from editing to printing. Theriogenology, 2020, 150: 247-254.
doi: S0093-691X(20)30076-5 pmid: 32088034 |
[1] | 高林豫, 许琦, 何钰霄, 习海娇, 刘一帆, 张涛, 李金泉, 张燕军, 王瑞军, 吕琦, 梅步俊, 苏蕊, 王志英. 基于多性状模型内蒙古绒山羊早期生长性状基因组预测准确性研究[J]. 遗传, 2024, 46(5): 421-430. |
[2] | 龚一鸣, 王翔宇, 贺小云, 刘玉芳, 余平, 储明星, 狄冉. 绵羊FecB突变对BMPR1B活性及BMP/SMAD通路的影响研究进展[J]. 遗传, 2023, 45(4): 295-305. |
[3] | 宋绍征, 何正义, 成勇, 于宝利, 张婷, 李丹. TALENs介导MSTN基因突变山羊的制备及性能分析[J]. 遗传, 2022, 44(6): 531-542. |
[4] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[5] | 何晓红, 蒋琳, 浦亚斌, 赵倩君, 马月辉. 牛、绵羊角的遗传定位及遗传机制研究进展[J]. 遗传, 2021, 43(1): 40-51. |
[6] | 宋绍征, 于康英, 张婷, 陆睿, 潘生强, 周鸣鸣, 成勇. tPA/gGH双基因转染山羊乳腺上皮细胞表达分析[J]. 遗传, 2020, 42(4): 380-387. |
[7] | 唐连超, 谷峰. CRISPR-Cas基因编辑系统升级:聚焦Cas蛋白和PAM[J]. 遗传, 2020, 42(3): 236-249. |
[8] | 王冰源, 牟玉莲, 李奎, 刘志国. 农业动物干细胞研究进展[J]. 遗传, 2020, 42(11): 1073-1080. |
[9] | 赵志达,张莉. 基因组选择在绵羊育种中的应用[J]. 遗传, 2019, 41(4): 293-303. |
[10] | 王凤红,张磊,李晓凯,范一星,乔贤,龚高,严晓春,张令天,王志英,王瑞军,刘志红,王志新,何利兵,张燕军,李金泉,赵艳红,苏蕊. 山羊基因组研究进展[J]. 遗传, 2019, 41(10): 928-938. |
[11] | 任云晓, 肖茹丹, 娄晓敏, 方向东. 基因编辑技术及其在基因治疗中的应用[J]. 遗传, 2019, 41(1): 18-27. |
[12] | 胡广东,郝科兴,黄涛,曾维斌,谷新利,王静. 绵羊高效转基因通用型piggyBac转座子载体构建及功能验证[J]. 遗传, 2018, 40(8): 647-656. |
[13] | 黄耀强,李国玲,杨化强,吴珍芳. 基因编辑猪在生物医学研究中的应用[J]. 遗传, 2018, 40(8): 632-646. |
[14] | 夏青, 刘秋月, 王翔宇, 胡文萍, 李春艳, 贺小云, 储明星, 狄冉. 绵羊季节性繁殖分子机制及休情季节诱导绵羊发情配种技术[J]. 遗传, 2018, 40(5): 369-377. |
[15] | 李俊涛,赵薇,李丹丹,冯静,巴贵,宋天增,张红平. miR-101a靶向EZH2促进山羊骨骼肌卫星细胞的分化[J]. 遗传, 2017, 39(9): 828-836. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: