遗传 ›› 2025, Vol. 47 ›› Issue (8): 928-943.doi: 10.16288/j.yczz.25-163
收稿日期:
2025-06-05
修回日期:
2025-06-23
出版日期:
2025-06-24
发布日期:
2025-06-24
通讯作者:
郑丙莲,教授,博士生导师,研究方向:非编码RNA与植物生殖发育。E-mail: zhengbl@fudan.edu.cn作者简介:
杨怀昊,博士研究生,专业方向:生物化学与分子生物学。E-mail: 21110700078@m.fudan.edu.cn
基金资助:
Huaihao Yang(), Binglian Zheng(
)
Received:
2025-06-05
Revised:
2025-06-23
Published:
2025-06-24
Online:
2025-06-24
Supported by:
摘要:
植物小RNA (small RNA, sRNA)是植物基因表达调控及基因组稳定性的关键调控因子。根据产生途径及作用方式的不同,其主要分为微小RNA (microRNA,miRNA)和小干扰RNA (small interfering RNA, siRNA)两大类。这些不同类型的sRNA依赖多种加工蛋白产生,也依赖不同效应蛋白帮助其发挥功能,并以不同的方式广泛地参与植物各类发育调控与环境响应的过程。近年来,多物种中的高通量测序数据鉴定到了越来越多新型植物sRNA,sRNA在拟南芥(Arabidopsis thaliana)及各类作物中的研究进展也促进了对其产生方式、调控模式及其生物学功能的深入理解。本文系统综述了不同类型植物sRNA的研究进展,主要包括其生物合成途径、作用机制与生物学功能,并结合现有技术讨论了植物sRNA在农业中的应用方式及其作为新型RNA农药的应用前景,旨在为植物sRNA的深入研究及农业应用提供理论基础。
杨怀昊, 郑丙莲. 植物小RNA的产生、作用方式、功能及在农业中的应用前景[J]. 遗传, 2025, 47(8): 928-943.
Huaihao Yang, Binglian Zheng. Biogenesis, action, function of plant small RNAs and their potential application in agriculture[J]. Hereditas(Beijing), 2025, 47(8): 928-943.
图1
植物内源sRNA的产生途径 A:miRNA的产生途径。MIRNA位点由Pol II转录产生的初级转录本pri-miRNA经过DCL1切割复合体的两次切割形成miRNA/miRNA*双链体,双链体被HEN1甲基化后产生成熟的miRNA并被装载至效应蛋白AGO1中。B:hc-siRNA的产生途径。在转座子(TE)及重复序列区域,由Pol IV转录的30~40 nt的短转录本通过RDR2形成双链RNA,该双链RNA随后被DCL3切割成长度为24-nt的hc-siRNA双链体,双链体被HEN1甲基化后产生成熟的hc-siRNA并被装载至效应蛋白AGO4/6/9中。C:phasiRNA的产生途径。在PHAS位点,Pol II产生的转录本被miRNA切割,RNA结合蛋白SGS3帮助RDR6将切割后的单链RNA加工成双链RNA,该双链RNA随后被DCL4或DCL5(单子叶植物特有)切割成长度为21-nt或24-nt的phasiRNA双链体,双链体被HEN1甲基化后产生成熟的phasiRNA并被装载至对应的效应蛋白中。"
图2
植物sRNA的作用方式 植物miRNA主要通过切割靶标RNA的方式发挥作用,通过转录后水平基因沉默(post-transcriptional gene silencing, PTGS)的方式抑制基因表达,但部分植物miRNA也能介导翻译抑制。与之不同的是,hc-siRNA则通过另一种方式发挥其基因沉默的作用:24-nt的hc-siRNA与AGO4/6/9形成的RISC复合物通过RdDM途径发挥异染色质沉默的功能,通过转录水平基因沉默(transcriptional gene silencing, TGS)的方式抑制基因表达。不同长度的phasiRNA可能存在不同的作用方式,21-nt的phasiRNA与miRNA类似,主要通过PTGS途径发挥作用,而24-nt的phasiRNA则更有可能通过TGS的途径发挥作用[54]。"
表1
不同物种中RdDM相关基因突变的发育表型"
突变基因 | 物种 | 主要发育表型 | 参考文献 |
---|---|---|---|
OsNRPD1a/b | 水稻(Oryza sativa) | 植株矮小、分蘖增加 | [ |
OsDCL3a | 水稻 | 植株矮小、叶倾角增大、分枝减少 | [ |
OsNRPD2 | 水稻 | 植株矮小、抽穗异常、种子败育 | [ |
ZmRPD1(RMR6) | 玉米(Zea mays) | 植株矮小、节间缩短、性别决定异常 | [ |
SlNRPD1/NRPE1 | 番茄(Solanum lycopersicum) | 生长发育迟缓、种子败育、果实发育异常 | [ |
BraA.NRPD1/RDR2/NRPE1 | 蔓菁(Brassica rapa) | 种子发育异常 | [ |
CrNRPD1 | 荠菜(Capsella rubella) | 花粉发育异常 | [ |
[1] |
Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, Martienssen RA. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell, 2009, 136(3): 461-472.
pmid: 19203581 |
[2] |
Wei W, Ba ZQ, Gao M, Wu Y, Ma YT, Amiard S, White CI, Rendtlew Danielsen JM, Yang YG, Qi YJ. A role for small RNAs in DNA double-strand break repair. Cell, 2012, 149(1): 101-112.
pmid: 22445173 |
[3] |
Panstruga R, Spanu P. Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions. New Phytol, 2024, 241(2): 567-577.
pmid: 37985402 |
[4] |
Xie ZX, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis MIRNA genes. Plant Physiol, 2005, 138(4): 2145-2154.
pmid: 16040653 |
[5] |
Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA, 2004, 101(34): 12753-12758.
pmid: 15314213 |
[6] |
Han MH, Goud S, Song L, Fedoroff N. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA, 2004, 101(4): 1093-1098.
pmid: 14722360 |
[7] |
Yang L, Liu ZQ, Lu F, Dong AW, Huang H. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J, 2006, 47(6): 841-850.
pmid: 16889646 |
[8] |
Fang YD, Spector DL. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol, 2007, 17(9): 818-823.
pmid: 17442570 |
[9] |
Xie DQ, Chen M, Niu JR, Wang L, Li Y, Fang XF, Li PL, Qi YJ. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat Cell Biol, 2021, 23(1): 32-39.
pmid: 33288888 |
[10] |
Yu B, Yang ZY, Li JJ, Minakhina S, Yang MC, Padgett RW, Steward R, Chen XM. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005, 307(5711): 932-935.
pmid: 15705854 |
[11] |
Li JJ, Yang ZY, Yu B, Liu J, Chen XM. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol, 2005, 15(16): 1501-1507.
pmid: 16111943 |
[12] |
Ren GD, Chen XM, Yu B. Uridylation of miRNAs by hen1 suppressor1 in Arabidopsis. Curr Biol, 2012, 22(8): 695-700.
pmid: 22464191 |
[13] |
Tu B, Liu L, Xu C, Zhai JX, Li SB, Lopez MA, Zhao YY, Yu Y, Ramachandran V, Ren GD, Yu B, Li SG, Meyers BC, Mo BX, Chen XM. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet, 2015, 11(4): e1005119.
pmid: 25928405 |
[14] |
Ramachandran V, Chen XM. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science, 2008, 321(5895): 1490-1492.
pmid: 18787168 |
[15] |
Willmann MR, Endres MW, Cook RT, Gregory BD. The functions of RNA-dependent RNA polymerases in Arabidopsis. Arabidopsis Book, 2011, 9: e0146.
pmid: 22303271 |
[16] |
Blevins T, Podicheti R, Mishra V, Marasco M, Wang J, Rusch D, Tang HX, Pikaard CS. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. eLife, 2015, 4: e09591.
pmid: 26430765 |
[17] |
Zhai JX, Bischof S, Wang HF, Feng SH, Lee TF, Teng C, Chen XY, Park SY, Liu LS, Gallego-Bartolome J, Liu WL, Henderson IR, Meyers BC, Ausin I, Jacobsen SE. A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis. Cell, 2015, 163(2): 445-455.
pmid: 26451488 |
[18] |
Haag JR, Ream TS, Marasco M, Nicora CD, Norbeck AD, Pasa-Tolic L, Pikaard CS. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol Cell, 2012, 48(5): 811-818.
pmid: 23142082 |
[19] |
Huang K, Wu XX, Fang CL, Xu ZG, Zhang HW, Gao J, Zhou CM, You LL, Gu ZX, Mu WH, Feng Y, Wang JW, Zhang Y. Pol IV and RDR2: A two-RNA-polymerase machine that produces double-stranded RNA. Science, 2021, 374(6575): 1579-1586.
pmid: 34941388 |
[20] |
Wang Q, Xue Y, Zhang LX, Zhong ZH, Feng SH, Wang CS, Xiao LF, Yang ZL, Harris CJ, Wu Z, Zhai JX, Yang MJ, Li SS, Jacobsen SE, Du JM. Mechanism of siRNA production by a plant Dicer-RNA complex in dicing- competent conformation. Science, 2021, 374(6571): 1152-1157.
pmid: 34648373 |
[21] |
Zilberman D, Cao XF, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 2003, 299(5607): 716-719.
pmid: 12522258 |
[22] |
Havecker ER, Wallbridge LM, Hardcastle TJ, Bush MS, Kelly KA, Dunn RM, Schwach F, Doonan JH, Baulcombe DC. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell, 2010, 22(2): 321-334.
pmid: 20173091 |
[23] |
Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell, 2007, 19(3): 926-942.
pmid: 17400893 |
[24] |
Zhai JX, Jeong DH, De Paoli E, Park S, Rosen BD, Li YP, González AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev, 2011, 25(23): 2540-2553.
pmid: 22156213 |
[25] |
Xia R, Zhu H, An YQ, Beers EP, Liu ZR. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol, 2012, 13(6): R47.
pmid: 22704043 |
[26] |
Fei QL, Xia R, Meyers BC. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell, 2013, 25(7): 2400-2415.
pmid: 23881411 |
[27] |
Liu YL, Teng C, Xia R, Meyers BC. PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. Plant Cell, 2020, 32(10): 3059-3080.
pmid: 32817252 |
[28] |
Moissiard G, Parizotto EA, Himber C, Voinnet O. Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer- like 2, and is compromised by viral-encoded suppressor proteins. RNA, 2007, 13(8): 1268-1278.
pmid: 17592042 |
[29] |
Bouché N, Lauressergues D, Gasciolli V, Vaucheret H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J, 2006, 25(14): 3347-3356.
pmid: 16810317 |
[30] |
Yan Y, Xie YP, Gao Q, Pan YJ, Tang XL, Liu YL, Li WY, Guo HW. Distinct regulation of mRNA decay pathways by ABA enhances Nitrate Reductase 1/2-derived siRNAs production and stress adaptation. Mol Plant, 2025, 18(5): 853-871.
pmid: 40253589 |
[31] |
Wu HH, Li BS, Iwakawa HO, Pan YJ, Tang XL, Ling-hu QY, Liu YL, Sheng SX, Feng L, Zhang H, Zhang XY, Tang ZH, Xia XL, Zhai JX, Guo HW. Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature, 2020, 581(7806): 89-93.
pmid: 32376953 |
[32] |
Katsarou K, Mavrothalassiti E, Dermauw W, Van Leeuwen T, Kalantidis K. Combined activity of DCL2 and DCL3 is crucial in the defense against potato spindle tuber viroid. PLoS Pathog, 2016, 12(10): e1005936.
pmid: 27732664 |
[33] |
Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science, 2006, 313(5783): 68-71.
pmid: 16741077 |
[34] |
Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL, Walbot V, Sundaresan V, Vance V, Bowman LH. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res, 2009, 19(8): 1429-1440.
pmid: 19584097 |
[35] |
Zhai JX, Zhang H, Arikit S, Huang K, Nan GL, Walbot V, Meyers BC. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci USA, 2015, 112(10): 3146-3151.
pmid: 25713378 |
[36] |
Song XW, Li PC, Zhai JX, Zhou M, Ma LJ, Liu B, Jeong DH, Nakano M, Cao SY, Liu CY, Chu CC, Wang XJ, Green PJ, Meyers BC, Cao XF. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J, 2012, 69(3): 462-474.
pmid: 21973320 |
[37] |
Araki S, Le NT, Koizumi K, Villar-Briones A, Nonomura KI, Endo M, Inoue H, Saze H, Komiya R. miR2118- dependent U-rich phasiRNA production in rice anther wall development. Nat Commun, 2020, 11(1): 3115.
pmid: 32561756 |
[38] |
Kakrana A, Mathioni SM, Huang K, Hammond R, Vandivier L, Patel P, Arikit S, Shevchenko O, Harkess AE, Kingham B, Gregory BD, Leebens-Mack JH, Meyers BC. Plant 24-nt reproductive phasiRNAs from intramolecular duplex mRNAs in diverse monocots. Genome Res, 2018, 28(9): 1333-1344.
pmid: 30002159 |
[39] |
Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V. Dicer-like 5 deficiency confers temperature- sensitive male sterility in maize. Nat Commun, 2020, 11(1): 2912.
pmid: 32518237 |
[40] |
Pokhrel S, Huang K, Bélanger S, Zhan JP, Caplan JL, Kramer EM, Meyers BC. Pre-meiotic 21-nucleotide reproductive phasiRNAs emerged in seed plants and diversified in flowering plants. Nat Commun, 2021, 12(1): 4941.
pmid: 34400639 |
[41] |
Xia R, Chen CJ, Pokhrel S, Ma WQ, Huang K, Patel P, Wang FX, Xu J, Liu ZC, Li JG, Meyers BC. 24-nt reproductive phasiRNAs are broadly present in angiosperms. Nature Commun, 2019, 10(1): 627.
pmid: 30733503 |
[42] |
Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH. 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA, 2010, 107(34): 15269-15274.
pmid: 20643946 |
[43] |
Fei QL, Yu Y, Liu L, Zhang Y, Baldrich P, Dai Q, Chen XM, Meyers BC. Biogenesis of a 22-nt microRNA in Phaseoleae species by precursor-programmed uridylation. Proc Natl Acad Sci USA, 2018, 115(31): 8037-8042.
pmid: 30012624 |
[44] |
Zhang H, Xia R, Meyers BC, Walbot V. Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr Opin Plant Biol, 2015, 27: 84-90.
pmid: 26190741 |
[45] |
Mi SJ, Cai T, Hu YG, Chen YM, Hodges E, Ni FR, Wu L, Li S, Zhou HY, Long CZ, Chen S, Hannon GJ, Qi YJ. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5′ terminal nucleotide. Cell, 2008, 133(1): 116-127.
pmid: 18342361 |
[46] |
Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y. The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins. Plant Cell Physiol, 2008, 49(4): 493-500.
pmid: 18344228 |
[47] |
Zhan JP, Meyers BC. Plant small RNAs: their biogenesis, regulatory roles, and functions. Annu Rev Plant Biol, 2023, 74: 21-51.
pmid: 36854480 |
[48] |
Souret FF, Kastenmayer JP, Green PJ. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell, 2004, 15(2): 173-183.
pmid: 15260969 |
[49] |
Zhang ZH, Hu FQ, Sung MW, Shu C, Castillo-Gonzalez C, Koiwa H, Tang GL, Dickman M, Li PW, Zhang XR. RISC-interacting clearing 3′-5′ exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana. eLife, 2017, 6: e24466.
pmid: 28463111 |
[50] |
Reis RS, Hart-Smith G, Eamens AL, Wilkins MR, Waterhouse PM. Gene regulation by translational inhibition is determined by Dicer partnering proteins. Nat Plants, 2015, 1(3): 14027.
pmid: 27246880 |
[51] |
Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet, 2014, 15(6): 394-408.
pmid: 24805120 |
[52] |
Zheng BL, Wang ZM, Li SB, Yu B, Liu JY, Chen XM. Intergenic transcription by RNA Polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev, 2009, 23(24): 2850-2860.
pmid: 19948763 |
[53] |
Sigman MJ, Panda K, Kirchner R, McLain LL, Payne H, Peasari JR, Husbands AY, Slotkin RK, McCue AD. An siRNA-guided ARGONAUTE protein directs RNA polymerase V to initiate DNA methylation. Nat Plants, 2021, 7(11): 1461-1474.
pmid: 34750500 |
[54] |
Zhang M, Ma XX, Wang CY, Li Q, Meyers BC, Springer NM, Walbot V. CHH DNA methylation increases at 24-PHAS loci depend on 24-nt phased small interfering RNAs in maize meiotic anthers. New Phytol, 2021, 229(5): 2984-2997.
pmid: 33135165 |
[55] |
Tang JY, Chu CC. MicroRNAs in crop improvement: fine-tuners for complex traits. Nat Plants, 2017, 3: 17077.
pmid: 28665396 |
[56] |
Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57: 19-53.
pmid: 16669754 |
[57] |
Chen XM. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol, 2009, 25: 21-44.
pmid: 19575669 |
[58] |
D'Ario M, Griffiths-Jones S, Kim M. Small RNAs: big impact on plant development. Trends Plant Sci, 2017, 22(12): 1056-1068.
pmid: 29032035 |
[59] |
Song XW, Li Y, Cao XF, Qi YJ. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol, 2019, 70: 489-525.
pmid: 30848930 |
[60] |
Ouyang WQ, Sun HD, Wang Y. Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement. J Genet Genomics, 2024, doi: 10.1016/j.jgg.2024.12.011.
pmid: 39716571 |
[61] |
Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP. MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature, 2004, 428(6978): 84-88.
pmid: 14999285 |
[62] |
Kidner CA, Martienssen RA. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 2004, 428(6978): 81-84.
pmid: 14999284 |
[63] |
Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang GL, Zamore PD, Barton MK, Bartel DP. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J, 2004, 23(16): 3356-3364.
pmid: 15282547 |
[64] |
Armenta-Medina A, Lepe-Soltero D, Xiang DQ, Datla R, Abreu-Goodger C, Gillmor CS. Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote. Dev Biol, 2017, 431(2): 145-151.
pmid: 28912016 |
[65] |
Zhao YS, Wang SY, Wu WY, Li L, Jiang T, Zheng BL. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis. Nat Commun, 2018, 9(1): 5011.
pmid: 30479343 |
[66] |
Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell, 2006, 18(11): 2929-2945.
pmid: 17098808 |
[67] |
Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development, 2010, 137(1): 103-112.
pmid: 20023165 |
[68] |
Chen XM. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303(5666): 2022-2025.
pmid: 12893888 |
[69] |
Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker MR, Laux T. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell, 2013, 24(2): 125-132.
pmid: 23333352 |
[70] |
Song JB, Huang SQ, Dalmay T, Yang ZM. Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS. Plant Cell Physiol, 2012, 53(9): 1669.
pmid: 22864450 |
[71] |
Liu LY, Hu BB, Guo SY, Xue ZH, Wang T, Zhang C. miR394 and LCR cooperate with TPL to regulate AM initiation. Nat Commun, 2024, 15(1): 10156.
pmid: 39578457 |
[72] |
Chitwood DH, Nogueira FTS, Howell MD, Montgomery TA, Carrington JC, Timmermans MCP. Pattern formation via small RNA mobility. Genes Dev, 2009, 23(5): 549-554.
pmid: 19270155 |
[73] |
Nogueira FT, Timmermans MC. An interplay between small regulatory RNAs patterns leaves. Plant Signal Behav, 2007, 2(6): 519-521.
pmid: 19704546 |
[74] |
Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 2009, 138(4): 750-759.
pmid: 19703400 |
[75] |
Chuck G, Meeley R, Irish E, Sakai H, Hake S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet, 2007, 39(12): 1517-1521.
pmid: 18026103 |
[76] |
Xie KB, Wu CQ, Xiong LZ. Genomic organization. differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiology, 2006, 142(1): 280-293.
pmid: 16861571 |
[77] |
Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 2003, 15(11): 2730-2741.
pmid: 14555699 |
[78] |
Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell, 2007, 19(9): 2736-2748.
pmid: 17890372 |
[79] |
Cheng YJ, Shang GD, Xu ZG, Yu S, Wu LY, Zhai D, Tian SL, Gao J, Wang L, Wang JW. Cell division in the shoot apical meristem is a trigger for miR156 decline and vegetative phase transition in Arabidopsis. Proc Natl Acad Sci USA, 2021, 118(46): e2115667118.
pmid: 34750273 |
[80] |
Liu YR, Wang KX, Li DY, Yan JP, Zhang WJ. Enhanced cold tolerance and tillering in switchgrass (Panicum virgatum L.) by heterologous expression of Osa-miR393a. Plant Cell Physiol, 2017, 58(12): 2226-2240.
pmid: 29069481 |
[81] |
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 2006, 312(5772): 436-439.
pmid: 16627744 |
[82] |
Guan QM, Lu XY, Zeng HT, Zhang YY, Zhu JH. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J, 2013, 74(5): 840-851.
pmid: 23480361 |
[83] |
Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, Lu XY, Cui XP, Jin HL, Zhu JK. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell, 2008, 20(8): 2238-2251.
pmid: 18682547 |
[84] |
Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell, 2012, 24(9): 3590-3602.
pmid: 22960911 |
[85] |
Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O. Selective epigenetic control of retrotransposition in Arabidopsis. Nature, 2009, 461(7262): 427-430.
pmid: 19734882 |
[86] |
Vu TM, Nakamura M, Calarco JP, Susaki D, Lim PQ, Kinoshita T, Higashiyama T, Martienssen RA, Berger F. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development, 2013, 140(14): 2953-2960.
pmid: 23760956 |
[87] |
Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell, 2000, 6(4): 791-802.
pmid: 11090618 |
[88] |
Xu L, Yuan K, Yuan M, Meng XB, Chen M, Wu JG, Li JY, Qi YJ. Regulation of rice tillering by RNA-directed DNA methylation at miniature inverted-repeat transposable elements. Mol Plant, 2020, 13(6): 851-863.
pmid: 32087371 |
[89] |
Wei LY, Gu LF, Song XW, Cui XK, Lu ZK, Zhou M, Wang LL, Hu FY, Zhai JX, Meyers BC, Cao XF. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci USA, 2014, 111(10): 3877-3882.
pmid: 24554078 |
[90] |
Chakraborty T, Trujillo JT, Kendall T, Mosher RA. A null allele of the pol IV second subunit impacts stature and reproductive development in Oryza sativa. Plant J, 2022, 111(3): 748-755.
pmid: 35635763 |
[91] |
Erhard KF Jr, Stonaker JL, Parkinson SE, Lim JP, Hale CJ, Hollick JB. RNA polymerase IV functions in paramutation in Zea mays. Science, 2009, 323(5918): 1201-1205.
pmid: 19251626 |
[92] |
Parkinson SE, Gross SM, Hollick JB. Maize sex determination and abaxial leaf fates are canalized by a factor that maintains repressed epigenetic states. Dev Biol, 2007, 308(2): 462-473.
pmid: 17612519 |
[93] |
Feng YX, Wang YM, Wang T, Liu LT. NUCLEAR RNA POLYMERASE D1 is essential for tomato embryogenesis and desiccation tolerance in seeds. Cell Rep, 2025, 44(3): 115345.
pmid: 39982816 |
[94] |
Wang ZX, Butel N, Santos-González J, Borges F, Yi J, Martienssen RA, Martinez G, Köhler C. Polymerase IV plays a crucial role in pollen development in Capsella. Plant Cell, 2020, 32(4): 950-966.
pmid: 31988265 |
[95] |
Grover JW, Kendall T, Baten A, Burgess D, Freeling M, King GJ, Mosher RA. Maternal components of RNA-directed DNA methylation are required for seed development in Brassica rapa. Plant J, 2018, 94(4): 575-582.
pmid: 29569777 |
[96] |
Wang ZX, Butel N, Santos-González J, Simon L, Wärdig C, Köhler C. Transgenerational effect of mutants in the RNA-directed DNA methylation pathway on the triploid block in Arabidopsis. Genome Biol, 2021, 22(1): 141.
pmid: 33957942 |
[97] |
Satyaki PRV, Gehring M. Paternally acting canonical RNA-directed DNA methylation pathway genes sensitize Arabidopsis endosperm to paternal genome dosage. Plant Cell, 2019, 31(7): 1563-1578.
pmid: 31064867 |
[98] |
Gouil Q, Baulcombe DC. DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet, 2016, 12(12): e1006526.
pmid: 27997534 |
[99] |
Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol, 2012, 196(2): 427-440.
pmid: 22931461 |
[100] |
Zhang Y, Xia R, Kuang HH, Meyers BC. The diversification of plant NBS-LRR defense genes directs the evolution of microRNAs that target them. Mol Biol Evol, 2016, 33(10): 2692-2705.
pmid: 27512116 |
[101] |
Sosa-Valencia G, Palomar M, Covarrubias AA, Reyes JL. The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought. J Exp Bot, 2017, 68(8): 2013-2026.
pmid: 28338719 |
[102] |
Xie JB, Yang XH, Song YP, Du QZ, Li Y, Chen JH, Zhang DQ. Adaptive evolution and functional innovation of Populus-specific recently evolved microRNAs. New Phytol, 2017, 213(1): 206-219.
pmid: 27277139 |
[103] |
Yadava P, Tamim S, Zhang H, Teng C, Zhou X, Meyers BC, Walbot V. Transgenerational conditioned male fertility of HD-ZIP IV transcription factor mutant ocl4: impact on 21-nt phasiRNA accumulation in pre-meiotic maize anthers. Plant Reprod, 2021, 34(2): 117-129.
pmid: 33689028 |
[104] |
Komiya R, Ohyanagi H, Niihama M, Watanabe T, Nakano M, Kurata N, Nonomura KI. Rice germline- specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J, 2014, 78(3): 385-397.
pmid: 24635777 |
[105] |
Ding JH, Lu Q, Ouyang YD, Mao HL, Zhang PB, Yao JL, Xu CG, Li XH, Xiao JH, Zhang QF. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA, 2012, 109(7): 2654-2659.
pmid: 22308482 |
[106] |
Nan GL, Zhai JX, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers BC, Walbot V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017, 144(1): 163-172.
pmid: 27913638 |
[107] |
Ono S, Liu H, Tsuda K, Fukai E, Tanaka K, Sasaki T, Nonomura KI. EAT1 transcription factor, a non-cell- autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. PLoS Genet, 2018, 14(2): e1007238.
pmid: 29432414 |
[108] |
You CJ, He WR, Hang RL, Zhang CJ, Cao XF, Guo HW, Chen XM, Cui J, Mo BX. FIERY1 promotes microRNA accumulation by suppressing rRNA-derived small interfering RNAs in Arabidopsis. Nat Commun, 2019, 10(1): 4424.
pmid: 31562313 |
[109] |
Gu HQ, Lian B, Yuan YX, Kong C, Li Y, Liu C, Qi YJ. A 5′ tRNA-Ala-derived small RNA regulates anti-fungal defense in plants. Sci China Life Sci, 2022, 65(1): 1-15.
pmid: 34705222 |
[110] |
Liu MM, Ba ZQ, Costa-Nunes P, Wei W, Li LX, Kong F, Li Y, Chai JJ, Pontes O, Qi YJ. IDN2 interacts with RPA and facilitates DNA double-strand break repair by homologous recombination in Arabidopsis. Plant Cell, 2017, 29(3): 589-599.
pmid: 28223440 |
[111] |
Ba ZQ, Qi YJ. Small RNAs: emerging key players in DNA double-strand break repair. Sci China Life Sci, 2013, 56(10): 933-936.
pmid: 24026293 |
[112] |
Jiang JM, Ou XL, Han DL, He ZP, Liu S, Mao N, Zhang ZH, Peng CL, Lai JB, Yang CW. A diRNA-protein scaffold module mediates SMC5/6 recruitment in plant DNA repair. Plant Cell, 2022, 34(10): 3899-3914.
pmid: 35775944 |
[113] |
Ma X, Liu C, Cao X. Plant transfer RNA-derived fragments: biogenesis and functions. J Integr Plant Biol, 2021, 63(8): 1399-1409.
pmid: 34114725 |
[114] |
Ren B, Wang XT, Duan JB, Ma JX. Rhizobial tRNA- derived small RNAs are signal molecules regulating plant nodulation. Science, 2019, 365(6456): 919-922.
pmid: 31346137 |
[115] |
Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements in plants. Curr Opin Plant Biol, 2015, 27: 67-76.
pmid: 26164237 |
[116] |
Kim EY, Wang L, Lei Z, Li H, Fan WW, Cho J. Ribosome stalling and SGS3 phase separation prime the epigenetic silencing of transposons. Nat Plants, 2021, 7(3): 303-309.
pmid: 33649597 |
[117] |
Creasey KM, Zhai JX, Borges F, Van Ex F, Regulski M, Meyers BC, Martienssen RA. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature, 2014, 508(7496): 411-415.
pmid: 24670663 |
[118] |
Martinez G, Wolff P, Wang ZX, Moreno-Romero J, Santos-González J, Conze LL, DeFraia C, Slotkin RK, Köhler C. Paternal easiRNAs regulate parental genome dosage in Arabidopsis. Nat Genet, 2018, 50(2): 193-198.
pmid: 29335548 |
[119] |
Martínez G, Panda K, Köhler C, Slotkin RK. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat Plants, 2016, 2: 16030.
pmid: 27249563 |
[120] |
Wu WY, Li L, Zhao Y, Zhao YS, Jiang T, McCormick S, Zheng BL. Heterochromatic silencing is reinforced by ARID1-mediated small RNA movement in Arabidopsis pollen. New Phytol, 2020, 229(6): 3269-3280.
pmid: 32783185 |
[121] |
Herridge RP, Dolata J, Migliori V, de Santis Alves C, Borges F, Schorn AJ, van Ex F, Lin A, Bajczyk M, Parent JS, Leonardi T, Hendrick A, Kouzarides T, Martienssen RA. Pseudouridine guides germline small RNA transport and epigenetic inheritance. Nat Struct Mol Biol, 2025, 32(2): 277-286.
pmid: 39242979 |
[122] |
Borges F, Parent JS, van Ex F, Wolff P, Martinez G, Köhler C, Martienssen RA. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nat Genet, 2018, 50(2): 186-192.
pmid: 29335544 |
[123] |
Pachamuthu K, Simon M, Borges F. Targeted suppression of siRNA biogenesis in Arabidopsis pollen promotes triploid seed viability. Nat Commun, 2024, 15(1): 4612.
pmid: 38816386 |
[124] |
Parent JS, Cahn J, Herridge RP, Grimanelli D, Martienssen RA. Small RNAs guide histone methylation in Arabidopsis embryos. Genes Dev, 2021, 35(11-12): 841-846.
pmid: 34016690 |
[125] |
Rabuma T, Sanan-Mishra N. Artificial miRNAs and target-mimics as potential tools for crop improvement. Physiol Mol Biol Plants, 2025, 31(1): 67-91.
pmid: 39901962 |
[126] | Sharma D, Vanshika, Kaur A, Manchanda P. miRNA- based Genetic Engineering for Crop Improvement and Production of Functional Foods. Cham: Springer International Publishing, 2022, 401-429. [ |
[127] |
Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQM, Xu ZP. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants, 2017, 3: 16207.
pmid: 28067898 |
[128] |
Zhang H, Goh NS, Wang JW, Pinals RL, González- Grandío E, Demirer GS, Butrus S, Fakra SC, Del Rio Flores A, Zhai R, Zhao B, Park SJ, Landry MP. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat Nanotechnol, 2022, 17(2): 197-205.
pmid: 34811553 |
[129] |
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 2006, 18(5): 1121-1133.
pmid: 16531494 |
[130] |
Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 2007, 39(8): 1033-1037.
pmid: 17643101 |
[131] |
Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet, 2010, 6(7): e1001031.
pmid: 20661442 |
[132] |
Liu ZP, Wang XY, Chen X, Shi GQ, Bai QQ, Xiao K. TaMIR1139: a wheat miRNA responsive to Pi-starvation, acts a critical mediator in modulating plant tolerance to Pi deprivation. Plant Cell Rep, 2018, 37(9): 1293-1309.
pmid: 29947952 |
[133] |
Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, Xin PY, Yan CY, Chu JF, Li HQ, Chen YQ. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol, 2013, 31(9): 848-852.
pmid: 23873084 |
[134] |
Liu P, Zhang XX, Zhang F, Xu MZ, Ye ZX, Wang K, Liu S, Han XL, Cheng Y, Zhong KL, Zhang TY, Li LZ, Ma YZ, Chen M, Chen JP, Yang J. A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Mol Plant, 2021, 14(7): 1088-1103.
pmid: 33798746 |
[135] |
Yan J, Gu YY, Jia XY, Kang WJ, Pan SJ, Tang XQ, Chen XM, Tang GL. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell, 2012, 24(2): 415-427.
pmid: 22345490 |
[136] |
Mei J, Jiang N, Ren GD. The F-box protein HAWAIIAN SKIRT is required for mimicry target-induced microRNA degradation in Arabidopsis. J Integr Plant Biol, 2019, 61(11): 1121-1127.
pmid: 30565372 |
[137] | Guo MW, Fan YH, Ren GD. Molecular basis of microRNA stability and degradation in plants. Hereditas (Beijing), 2025, doi:10.16288/j.yczz.25-030. |
郭梦玮, 樊友宏, 任国栋. 植物miRNA稳定性与降解的分子基础. 遗传, 2025, doi:10.16288/j.yczz.25-030. | |
[138] |
Jian C, Hao PG, Hao CY, Liu SJ, Mao HD, Song QL, Zhou YB, Yin SN, Hou J, Zhang WJ, Zhao HX, Zhang XY, Li T. The miR319/TaGAMYB3 module regulates plant architecture and improves grain yield in common wheat (Triticum aestivum). New Phytol, 2022, 235(4): 1515-1530.
pmid: 35538666 |
[139] |
Zhang JS, Zhang H, Srivastava AK, Pan YJ, Bai JJ, Fang JJ, Shi HZ, Zhu JK. Knockdown of rice MicroRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol, 2018, 176(3): 2082-2094.
pmid: 29367235 |
[140] |
Canto-Pastor A, Santos BAMC, Valli AA, Summers W, Schornack S, Baulcombe DC. Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc Natl Acad Sci USA, 2019, 116(7): 2755-2760.
pmid: 30679269 |
[141] |
Zhao JH, Liu QY, Xie ZM, Guo HS. Exploring the challenges of RNAi-based strategies for crop protection. Adv Biotechnol (Singap), 2024, 2(3): 23.
pmid: 39883232 |
[142] |
Qiao LL, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao HW, Glass NL, Judelson HS, Mezzetti B, Niu DD, Jin HL. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol J, 2021, 19(9): 1756-1768.
pmid: 33774895 |
[143] |
Yu N, Christiaens O, Liu JS, Niu JZ, Cappelle K, Caccia S, Huvenne H, Smagghe G. Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci, 2013, 20(1): 4-14.
pmid: 23955821 |
[144] |
Rodrigues TB, Mishra SK, Sridharan K, Barnes ER, Alyokhin A, Tuttle R, Kokulapalan W, Garby D, Skizim NJ, Tang YW, Manley B, Aulisa L, Flannagan RD, Cobb C, Narva KE. First sprayable Double-stranded RNA- based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle (Leptinotarsa decemlineata). Front Plant Sci, 2021, 12: 728652.
pmid: 34887882 |
[145] | Blake WJ, Cunningham DS, Maceachran D, Abshire JR, Gupta M. Cell-free production of ribonucleic acid: EP4293104A3. 2024-04-24. |
[146] |
Fang RX. Microbe-induced gene silencing explores interspecies RNAi and opens up possibilities of crop protection. Sci China Life Sci, 2024, 67(3): 626-628.
pmid: 38155277 |
[147] | Mujtaba M, Wang DP, Carvalho LB, Oliveira JL, do Espirito Santo Pereira A, Sharif R, Jogaiah S, Paidi MK, Wang LC, Ali Q, Fraceto LF. Nanocarrier-mediated delivery of miRNA, RNAi, and CRISPR-Cas for plant protection: current trends and future directions. ACS Agric Sci Technol, 2021, 1(5): 417-435. |
[148] |
Worrall EA, Bravo-Cazar A, Nilon AT, Fletcher SJ, Robinson KE, Carr JP, Mitter N. Exogenous application of RNAi-inducing Double-stranded RNA inhibits aphid-mediated transmission of a plant virus. Front Plant Sci, 2019, 10: 265.
pmid: 30930914 |
[149] |
Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci Adv, 2020, 6(26): eaaz0495.
pmid: 32637592 |
[150] |
Zhang H, Zhang HL, Demirer GS, González-Grandío E, Fan CH, Landry MP. Engineering DNA nanostructures for siRNA delivery in plants. Nat Protoc, 2020, 15(9): 3064-3087.
pmid: 32807907 |
[1] | 郭梦玮, 樊友宏, 任国栋. 植物miRNA稳定性与降解的分子基础[J]. 遗传, 2025, 47(8): 944-957. |
[2] | 徐德钰, 周溪, 任玉洁. 基于RNAi的抗病毒免疫[J]. 遗传, 2025, 47(8): 876-884. |
[3] | 张潇, 于燕, 宁勇, 洪绮雯, 史怀平. MicroRNA促进基因表达研究进展[J]. 遗传, 2025, 47(7): 729-741. |
[4] | 张译文, 黄琴, 吴艳芸, 孙月, 韦永龙. LIN28A/B在肿瘤发生发展中的作用研究进展[J]. 遗传, 2024, 46(6): 452-465. |
[5] | 朱艳, 魏明, 周晓, 邓林华, 仇剑, 李果, 周世强, 谢浩, 李德生, 王承东. 大熊猫(Ailuropoda melanoleuca) miRNA研究进展[J]. 遗传, 2021, 43(9): 849-857. |
[6] | 魏勇, 何玉兰, 郑学礼. RNAi在抗蚊媒病毒感染中的研究进展[J]. 遗传, 2020, 42(2): 153-160. |
[7] | 饶琳, 孟飞龙, 房冉, 蔡晨依, 赵小立. MicroRNA调控耳蜗毛细胞发育的分子机制[J]. 遗传, 2019, 41(11): 994-1008. |
[8] | 夏蒙蒙,申雪沂,牛长敏,夏静,孙红亚,郑英. MicroRNA参与调控睾丸支持细胞的增殖与粘附功能[J]. 遗传, 2018, 40(9): 724-732. |
[9] | 刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[10] | 肖娟, 王讯, 罗毅, 李晓开, 李学伟. 附睾小体功能蛋白及sRNA研究进展[J]. 遗传, 2018, 40(3): 197-206. |
[11] | 李新云, 付亮亮, 程会军, 赵书红. MicroRNA调控哺乳动物骨骼肌发育[J]. 遗传, 2017, 39(11): 1046-1053. |
[12] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[13] | 魏俊,陆秀君,张晓林,梅梅,黄晓丽. MicroRNA在种子发育、休眠与萌发过程中的作用[J]. 遗传, 2017, 39(1): 14-21. |
[14] | 王伟, 王玉霜, 黄兰兰, 简子健, 王新华, 刘守仁, 皮文辉. siRNA干扰绵羊胚胎成纤维细胞Lig4基因增加同源重组载体重连修复效率[J]. 遗传, 2016, 38(9): 831-839. |
[15] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: