遗传 ›› 2025, Vol. 47 ›› Issue (8): 876-884.doi: 10.16288/j.yczz.25-077
收稿日期:
2025-03-18
修回日期:
2025-06-24
出版日期:
2025-08-20
发布日期:
2025-07-04
通讯作者:
周溪,博士,研究员,研究方向:病毒与宿主互作机制研究。E-mail: zhouxi@wh.iov.cn;作者简介:
徐德钰,硕士研究生,专业方向:病毒免疫学。E-mail: xudeyu@mail.ustc.edu.cn
基金资助:
Deyu Xu1,2(), Xi Zhou1,2(
), Yujie Ren2(
)
Received:
2025-03-18
Revised:
2025-06-24
Published:
2025-08-20
Online:
2025-07-04
Supported by:
摘要:
RNA干扰(RNA interference,RNAi)是一种由双链RNA (double-stranded RNA,dsRNA)产生的小RNA介导的基因沉默机制,能够引发特定基因的沉默。当病毒入侵后,病毒复制产生的dsRNA会被宿主细胞内的Dicer蛋白切割,产生病毒来源的小干扰RNA (virus-derived small interference RNAs,vsiRNA),并通过RNAi对病毒RNA进行切割清除,产生抗病毒作用。因此,RNAi在病毒感染过程中也被认为是一种高效的抗病毒免疫途径。然而,病毒在长期的进化过程中也产生了多种拮抗RNAi的途径,如通过编码特定的RNAi抑制蛋白(viral suppressor of RNAi,VSR)靶向拮抗该过程中的关键分子。研究表明,利用特异性靶向VSR来设计药物,可以在宿主细胞内“解锁”RNAi抗病毒功能,表现出极具潜力且相对广谱的抗病毒作用。此外,病毒感染也会受到一些宿主或病毒来源的微小RNA (miRNA)的调控,miRNA在病毒感染中的作用也为抗病毒治疗提供了新的靶点。本文综述了RNAi在抗病毒免疫中的作用机制、研究进展及其在抗病毒治疗中的应用前景,以期为抗病毒免疫研究和治疗提供理论支持。
徐德钰, 周溪, 任玉洁. 基于RNAi的抗病毒免疫[J]. 遗传, 2025, 47(8): 876-884.
Deyu Xu, Xi Zhou, Yujie Ren. RNAi-based antiviral immunity[J]. Hereditas(Beijing), 2025, 47(8): 876-884.
表1
常见的4种VSR的作用机制及例子"
VSR分类 | 作用机制 | 举例 | 相关病毒宿主 | 参考文献 |
---|---|---|---|---|
Dicer靶向 | 与Dicer-2结合,作用于其RNase III结构域,抑制该结构域对双链RNA的切割活性,使得dsRNA无法被有效切割为siRNA | 武汉野田村病毒(Wuhan Nodavirus,WhNV)的B2蛋白、DENV的NS4B蛋白等 | 蚊虫(Culicidae)、猪(Sus scrofa domesticus)、人(Homo sapiens) | [ |
dsRNA靶向 | 与dsRNA结合,抑制Dicer对dsRNA切割加工成vsiRNA的过程 | 猫疱疹病毒(feline herpesvirus,FHV)、NoV和WhNV的B2蛋白、A型流感病毒(influenza A virus,IAV)的非结构蛋白NS1、EV71的3A蛋白等 | 家猫(Felis catus)、蚊虫、猪、野生水禽、家禽、人 | [ |
vsiRNA靶向 | 与vsiRNA结合,使其无法正常组装进RISC,或者干扰RISC的正常功能,使得vsiRNA无法发挥其正常功能 | 番茄丛生矮化病毒(tomato bushy stunt virus,TBSV)的P19、柯萨奇病毒B3(coxsackievirus B3,CVB3)的13A、风疹病毒(Rubella virus,RUV)的Capsid等 | 烟草(Nicotiana tabacum)、 番茄(Solanum lycopersicum)等茄科植物;人 | [ |
AGO靶向 | 抑制AGO2的切割活性,使得RISC无法靶向切割病毒mRNA | 黑腹果蝇诺拉病毒(Drosophila melanogaster Nora virus,DmelNV)的病毒蛋白1(VP1)、蟋蟀麻痹病毒(cripavirus,CrPV)1A蛋白 | 黑腹果蝇(Drosophila melanogaster)、蟋蟀(Gryllulus)等 | [ |
[1] |
Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Ding SW, Voinnet O. Antiviral RNA interference in mammalian cells. Science, 2013, 342(6155): 235-238.
pmid: 24115438 |
[2] |
Qiu Y, Xu YP, Zhang Y, Zhou H, Deng YQ, Li XF, Miao M, Zhang Q, Zhong B, Hu YY, Zhang FC, Wu LG, Qin CF, Zhou X. Human virus-derived small RNAs can confer antiviral immunity in mammals. Immunity, 2018, 46(6): 780-781.
pmid: 30332633 |
[3] |
Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol, 2007, 25(12): 1435-1443.
pmid: 18066040 |
[4] |
Fang Y, Liu ZZ, Qiu Y, Kong J, Fu YH, Liu YJ, Wang C, Quan J, Wang Q, Xu W, Yin L, Cui J, Xu Y, Curry S, Jiang SB, Lu L, Zhou X. Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo. Immunity, 2021, 54(10): 2231-2244.e6.
pmid: 34555337 |
[5] | Anobile DP, Poirier EZ. RNA interference, an emerging component of antiviral immunity in mammals. Biochem Soc Trans, 2023, 51(1): 137-146. |
[6] |
Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature, 2009, 457(7228): 405-412.
pmid: 19158786 |
[7] | Wang HL, Wang XN, Chen DH. piRNA biogenesis in Drosophila ovary. Sci Sin Vitae, 2016, 46(1): 52-65. |
王海龙, 王晓娜, 陈大华. 果蝇卵巢中的 piRNA 发生. 中国科学:生命科学, 2016, 46(1): 52-65. | |
[8] |
Ding SW. RNA-based antiviral immunity. Nat Rev Immunol, 2010, 10(9): 632-644.
pmid: 20706278 |
[9] | He M, Wang ZW. Current status and development of miRNA and siRNA research on gastric cancer. Hereditas (Beijing), 2011, 33(9): 925-930. |
何苗, 王子卫. miRNA与siRNA胃癌相关研究的现状及进展. 遗传, 2011, 33(9): 925-930. | |
[10] |
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642-655.
pmid: 19239886 |
[11] |
Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101(1): 25-33.
pmid: 10778853 |
[12] |
Nykänen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001, 107(3): 309-321.
pmid: 11701122 |
[13] |
Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet, 2013, 14(7): 447-459.
pmid: 23732335 |
[14] | Li C, Du ZY, Chen JX. Structural and functional elucidation of AGO proteins. Chin J Biochem Mol Biol, 2009, 25(11): 4-11. |
李超, 杜志游, 陈集双. 解读AGO蛋白结构及其功能. 中国生物化学与分子生物学报, 2009, 25(11): 4-11. | |
[15] |
Verdel A, Jia ST, Gerber S, Sugiyama T, Gygi S, Grewal SIS, Moazed D. RNAi-mediated targeting of heterochromatin by the RITS complex. Science, 2004, 303(5658): 672-676.
pmid: 14704433 |
[16] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5): 843-854.
pmid: 8252621 |
[17] |
Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75(5): 855-862.
pmid: 8252622 |
[18] |
Sarett SM, Nelson CE, Duvall CL. Technologies for controlled, local delivery of siRNA. J Control Release, 2015, 218: 94-113.
pmid: 26476177 |
[19] | Zhang C, Pang QH. Silencing mechanisms of siRNA and miRNA in organisms. Chin J Biochem Mol Biol, 2012, 28(5): 393-398. |
张超, 庞全海. siRNA与miRNA在生物体基因调控中沉默机制的比较. 中国生物化学与分子生物学报, 2012, 28(5): 393-398. | |
[20] | Zhang CJ, Mo BX, Chen XM, Cui J. Advances on the molecular action mechanisms of plant miRNA. Biotechnol Bull, 2020, 36(7): 1-14. |
张翠桔, 莫蓓莘, 陈雪梅, 崔洁. 植物miRNA作用方式的分子机制研究进展. 生物技术通报, 2020, 36(7): 1-14. | |
[21] |
Wang X, Ramat A, Simonelig M, Liu MF. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol, 2023, 24(2): 123-141.
pmid: 36104626 |
[22] |
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet, 2019, 20(2): 89-108.
pmid: 30446728 |
[23] |
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-guided genome defense: from biogenesis to silencing. Annu Rev Genet, 2018, 52: 131-157.
pmid: 30476449 |
[24] |
Guo ZX, Li Y, Ding SW. Small RNA-based antimicrobial immunity. Nat Rev Immunol, 2019, 19(1): 31-44.
pmid: 30301972 |
[25] |
Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286(5441): 950-952.
pmid: 10542148 |
[26] |
Cullen BR. Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat Immunol, 2006, 7: 563-567.
pmid: 16715068 |
[27] |
Berkhout B. RNAi-mediated antiviral immunity in mammals. Curr Opin Virol, 2018, 32: 9-14.
pmid: 30015014 |
[28] |
Ding SW, Voinnet O. Antiviral immunity directed by small RNAs. Cell, 2007, 130(3): 413-426.
pmid: 17693253 |
[29] |
van der Veen AG, Maillard PV, Schmidt JM, Lee SA, Deddouche-Grass S, Borg A, Kjær S, Snijders AP, Reis e Sousa C. The RIG-I-like receptor LGP2 inhibits Dicer- dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J, 2018, 37(4): e97479.
pmid: 29351913 |
[30] |
Qiu Y, Xu YP, Wang M, Miao M, Zhou H, Xu JY, Kong J, Zheng D, Li RT, Zhang RR, Guo Y, Li XF, Cui J, Qin CF, Zhou X. Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes. Sci Adv, 2020, 6(6): eaax7989.
pmid: 32076641 |
[31] |
Kong J, Bie YY, Ji WT, Xu JY, Lyu B, Xiong XB, Qiu Y, Zhou X. Alphavirus infection triggers antiviral RNAi immunity in mammals. Cell Rep, 2023, 42(5): 112441.
pmid: 37104090 |
[32] |
Chen JY, Mu JF, Zhou KP, Zhang YM, Zhang JL, Shu T, Shang WJ, Ren YJ, Xu XQ, Zhang LK, Yuan S, Zhang DY, Cai K, Qiu Y, Zhou X. Targeting viral suppressor of RNAi confers anti-coronaviral activity. Mol Ther, 2025, 33(1): 201-214.
pmid: 39663700 |
[33] |
Song LP, Liu H, Gao SJ, Jiang W, Huang WL. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol, 2010, 84(17): 8849-60.
pmid: 20554777 |
[34] |
Wen WT, He ZJ, Jing QL, Hu YW, Lin CJ, Zhou R, Wang XQ, Su YF, Yuan JH, Chen ZX, Yuan J, Wu JH, Li J, Zhu X, Li MF. Cellular microRNA-miR-548g-3p modulates the replication of dengue virus. J Infect, 2015, 70(6): 631-640.
pmid: 25499200 |
[35] |
Castrillón-Betancur JC, Urcuqui-Inchima S. Overexpression of miR-484 and miR-744 in Vero cells alters Dengue virus replication. Mem Inst Oswaldo Cruz, 2017, 112(4): 281-291.
pmid: 28327787 |
[36] |
Yuan M, Tian XY, Ma WY, Zhang R, Zou X, Jin Y, Zheng N, Wu ZW, Wang YX. miRNA-431-5p enriched in EVs derived from IFN-β stimulated MSCs potently inhibited ZIKV through CD95 downregulation. Stem Cell Res Ther, 2024, 15(1): 435.
pmid: 39563434 |
[37] |
Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol, 2007, 25(12): 1435-43.
pmid: 18066040 |
[38] |
Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol, 2022, 23(10): 645-662.
pmid: 35710830 |
[39] |
Guo HY, Song XG, Xie CM, Huo Y, Zhang FJ, Chen XY, Geng YF, Fang RX. Rice yellow stunt rhabdovirus protein 6 suppresses systemic RNA silencing by blocking RDR6-mediated secondary siRNA synthesis. Mol Plant Microbe Interact, 2013, 26(8): 927-936.
pmid: 23634838 |
[40] |
Cai DW, Qiu Y, Qi N, Yan R, Lin MJ, Nie DB, Zhang JM, Hu YY. Characterization of Wuhan Nodavirus subgenomic RNA3 and the RNAi inhibition property of its encoded protein B2. Virus Res, 2010, 151(2): 153-161.
pmid: 20441781 |
[41] |
Kakumani PK, Ponia SS, S RK, Sood V, Chinnappan M, Banerjea AC, Medigeshi GR, Malhotra P, Mukherjee SK, Bhatnagar RK. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol, 2013, 87(16): 8870-8883.
pmid: 23741001 |
[42] |
Chen G, Han QX, Li WX, Hai R, Ding SW. Live-attenuated virus vaccine defective in RNAi suppression induces rapid protection in neonatal and adult mice lacking mature B and T cells. Proc Natl Acad Sci USA, 2024, 121(17): e2321170121.
pmid: 38630724 |
[43] |
García-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology, 1998, 252(2): 324-330.
pmid: 9878611 |
[44] |
Liu YK, Zhang L, Zhang YY, Liu DD, Du EQ, Yang ZQ. Functional analysis of RNAi suppressor P19 on improving baculovirus yield and transgene expression in Sf9 cells. Biotechnol Lett, 2015, 37(11): 2159-2166.
pmid: 26187316 |
[45] |
Mu JF, Zhang HB, Li T, Shu T, Qiu Y, Zhou X. The 3A protein of coxsackievirus B3 acts as a viral suppressor of RNA interference. J Gen Virol, 2020, 101(10): 1069-1078.
pmid: 32667281 |
[46] |
Xu JY, Kong J, Lyu B, Wang XT, Qian Q, Zhou X, Qiu Y. The capsid protein of Rubella Virus antagonizes RNA interference in mammalian cells. Viruses, 2021, 13(2): 154.
pmid: 33494454 |
[47] |
van Mierlo JT, Overheul GJ, Obadia B, van Cleef KWR, Webster CL, Saleh MC, Obbard DJ, van Rij RP.. Novel Drosophila viruses encode host-specific suppressors of RNAi. PLoS Pathog, 2014, 10(7): e1004256.
pmid: 25032815 |
[48] |
Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A, Deng CH, Krutchinsky A, Gross J, Antoniewski C, Andino R. Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat Struct Mol Biol, 2010, 17(5): 547-54.
pmid: 20400949 |
[49] |
Miao YX, Fu C, Yu ZJ, Yu LF, Tang Y, Wei MJ. Current status and trends in small nucleic acid drug development: leading the future. Acta Pharm Sin B, 2024, 14(9): 3802-3817.
pmid: 39309508 |
[50] |
Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen JZ. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA, 2004, 101(23): 8676-8681.
pmid: 15173599 |
[51] | Zhang WH, Lin ZQ, Zhuo M, Du HL, Wang XN. Research progress on influenza antiviral small RNAs. Hereditas (Beijing), 2012, 34(5): 526-532. |
郑维豪, 林志强, 卓敏, 杜红丽, 王小宁. 抗流感病毒小RNAs研究进展. 遗传, 2012, 34(5): 526-532. | |
[52] |
Li BJ, Tang QQ, Cheng D, Qin C, Xie FY, Wei Q, Xu J, Liu YJ, Zheng BJ, Woodle MC, Zhong NS, Lu PY. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med, 2005, 11(9): 944-951.
pmid: 16116432 |
[53] |
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym, 2021, 260: 117809.
pmid: 33712155 |
[54] |
Crunkhorn S. Extrahepatic oligonucleotide delivery. Nat Rev Drug Discov, 2023, 22(8): 623.
pmid: 37400709 |
[55] |
Sanchez-David RY, Maillard PV. Unlocking the therapeutic potential of antiviral RNAi. Immunity, 2021, 54(10): 2180-2182.
pmid: 34644551 |
[56] |
Xu YP, Qiu Y, Zhang BY, Chen GL, Chen Q, Wang M, Mo F, Xu JY, Wu J, Zhang RR, Cheng ML, Zhang NN, Lyu B, Zhu WL, Wu MH, Ye Q, Zhang D, Man JH, Li XF, Cui J, Xu ZH, Hu BY, Zhou X, Qin CF. Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Res, 2019, 29(4): 265-273.
pmid: 30814679 |
[57] |
Zhang QZ, Zhang CH, Xi Z. Enhancement of RNAi by a small molecule antibiotic enoxacin. Cell Res, 2008, 18(10): 1077-1079.
pmid: 18813225 |
[58] |
Lyu B, Wang C, Bie YY, Kong J, Wang A, Jin L, Qiu Y, Zhou X. Enoxacin shows broad-spectrum antiviral activity against diverse viruses by enhancing antiviral RNA interference in insects. J Virol, 2022, 96(4): e0177821.
pmid: 34908449 |
[59] |
Wu QN, Li LX, Jia Y, Xu TL, Zhou X. Advances in studies of circulating microRNAs: origination, transportation, and distal target regulation. J Cell Commun Signal, 2023, 17(3): 445-455.
pmid: 36357651 |
[60] |
Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into health-promoting effects of plant microRNAs: a review. J Agric Food Chem, 2021, 69(48): 14372-14386.
pmid: 34813309 |
[61] |
Zhou Z, Li XH, Liu JX, Dong L, Chen Q, Liu JL, Kong HH, Zhang QY, Qi X, Hou DX, Zhang L, Zhang GQ, Liu YC, Zhang YJ, Li J, Wang J, Chen X, Wang H, Zhang JF, Chen HL, Zen K, Zhang CY. Honeysuckle-encoded atypical microRNA2911 directly targets influenza a viruses. Cell Res, 2015, 25(1): 39-49.
pmid: 25287280 |
[62] |
Zhang S, Sang XL, Hou DX, Chen JM, Gu HW, Zhang YJ, Li J, Yang DR, Zhu HZ, Yang X, Wang FY, Zhang CN, Chen X, Zen K, Zhang CY, Hong Z. Plant-derived RNAi therapeutics: A strategic inhibitor of HBsAg. Biomaterials, 2019, 210: 83-93.
pmid: 31078314 |
[63] | Tao H, Chen R, Gao Q. Effects of cross-kingdom regulation by microRNAs in plants. Chin J Biochem Mol Biol, 2023, 39(12): 1685-1695. |
陶涵金, 陈冉, 高崎. 植物microRNA跨界调控作用. 中国生物化学与分子生物学报, 2023, 39(12): 1685-1695. |
[1] | 郭梦玮, 樊友宏, 任国栋. 植物miRNA稳定性与降解的分子基础[J]. 遗传, 2025, 47(8): 944-957. |
[2] | 杨怀昊, 郑丙莲. 植物小RNA的产生、作用方式、功能及在农业中的应用前景[J]. 遗传, 2025, 47(8): 928-943. |
[3] | 张潇, 于燕, 宁勇, 洪绮雯, 史怀平. MicroRNA促进基因表达研究进展[J]. 遗传, 2025, 47(7): 729-741. |
[4] | 张译文, 黄琴, 吴艳芸, 孙月, 韦永龙. LIN28A/B在肿瘤发生发展中的作用研究进展[J]. 遗传, 2024, 46(6): 452-465. |
[5] | 朱艳, 魏明, 周晓, 邓林华, 仇剑, 李果, 周世强, 谢浩, 李德生, 王承东. 大熊猫(Ailuropoda melanoleuca) miRNA研究进展[J]. 遗传, 2021, 43(9): 849-857. |
[6] | 魏勇, 何玉兰, 郑学礼. RNAi在抗蚊媒病毒感染中的研究进展[J]. 遗传, 2020, 42(2): 153-160. |
[7] | 饶琳, 孟飞龙, 房冉, 蔡晨依, 赵小立. MicroRNA调控耳蜗毛细胞发育的分子机制[J]. 遗传, 2019, 41(11): 994-1008. |
[8] | 夏蒙蒙,申雪沂,牛长敏,夏静,孙红亚,郑英. MicroRNA参与调控睾丸支持细胞的增殖与粘附功能[J]. 遗传, 2018, 40(9): 724-732. |
[9] | 刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[10] | 张华伟, 孟星宇, 李连峰, 杨玉莹, 仇华吉. 长链非编码RNA——抗病毒天然免疫应答的新兴调控因子[J]. 遗传, 2018, 40(7): 525-533. |
[11] | 肖娟, 王讯, 罗毅, 李晓开, 李学伟. 附睾小体功能蛋白及sRNA研究进展[J]. 遗传, 2018, 40(3): 197-206. |
[12] | 李新云, 付亮亮, 程会军, 赵书红. MicroRNA调控哺乳动物骨骼肌发育[J]. 遗传, 2017, 39(11): 1046-1053. |
[13] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[14] | 魏俊,陆秀君,张晓林,梅梅,黄晓丽. MicroRNA在种子发育、休眠与萌发过程中的作用[J]. 遗传, 2017, 39(1): 14-21. |
[15] | 王伟, 王玉霜, 黄兰兰, 简子健, 王新华, 刘守仁, 皮文辉. siRNA干扰绵羊胚胎成纤维细胞Lig4基因增加同源重组载体重连修复效率[J]. 遗传, 2016, 38(9): 831-839. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: