[1] Zhao CZ, Yang CD, Wu LB, Qi XF, Huang FS, Hu PS, Luo J. Studies of culture character in glabrous rice ( Oryza sativa L.). Acta Agron Sin , 1999, 25(1): 82-85. 赵成章, 杨长登, 吴连斌, 戚秀芳, 黄发松, 胡培松, 罗矩. 光身稻的培养特性研究. 作物学报, 1999, 25(1): 82-85. [2] Johnson HB. Plant pubescence: An ecological perspective. Bot Rev , 1975, 41(3): 233-258. [3] Szymanski DB, Lloyd AM, Marks MD. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis . Trends Plant Sci , 2000, 5(5): 214-219. [4] Pu L, Suo JF, Xue YB. Molecular control of plant trichome development. Acta Genet Sin , 2003, 30(11): 1078-1084. 普莉, 索金凤, 薛勇彪. 植物表皮毛发育的分子遗传控制. 遗传学报, 2003, 30(11): 1078-1084. [5] Serna L, Martin C. Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci , 2006, 11(6): 274-280. [6] Ishida T, Kurata T, Okada K, Wada T. A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol , 2008, 59: 365-386. [7] Yan A, Pan JB, An LZ, Gan YB, Feng HY. The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana . J Photochem Photobiol B , 2012, 113: 29-35. [8] Herman PL, Marks MD. Trichome development in Arabidopsis thaliana . II. Isolation and complementation of the GLABROUS1 gene. Plant Cell , 1989, 1(11): 1051-1055. [9] Rerie WG, Feldmann KA, Marks MD. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis . Genes Dev , 1994, 8(12): 1388-1399. [10] Zhao HT, Wang XX, Zhu DD, Cui SJ, Li X, Cao Y, Ma LG. A single amino acid substitution in IIIf subfamily of basic Helix-Loop-Helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis . J Biol Chem , 2012, 287(17): 14109-14121. [11] Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis , encodes a WD40 repeat protein. Plant Cell , 1999, 11(7): 1337-1350. [12] Di Cristina M, Sessa G, Dolan L, Linstead P, Baima S, Ruberti I, Morelli G. The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J , 2002, 10(3): 393-402. [13] Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2 , a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell , 2002, 14(6): 1359-1375. [14] Hülskamp M, Miséra S, Jürgens G. Genetic dissection of trichome cell development in Arabidopsis . Cell , 1994, 76(3): 555-566. [15] Yu N, Cai WJ, Wang SC, Shan CM, Wang LJ, Chen XY. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana . Plant Cell , 2010, 22(7): 2322-2335. [16] Gan LJ, Xia K, Chen JG, Wang SC. Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis . BMC Plant Biol , 2011, 11: 176. [17] Matías-Hernández L, Aguilar-Jaramillo AE, Osnato M, Weinstain R, Shani E, Suárez-López P, Pelaz S. TEMPRANILLO reveals the mesophyll as crucial for epidermal trichome formation. Plant Physiol , 2016, 170(3): 1624-1639. [18] Gao Y, Gong XM, Cao WH, Zhao JF, Fu LQ, Wang XC, Schumaker KS, Guo Y. SAD2 in Arabidopsis functions in trichome initiation through mediating GL3 function and regulating GL1 , TTG1 and GL2 expression. J Integr Plant Biol , 2008, 50(7): 906-917. [19] Reiner T, Hoefle C, Huesmann C, Ménesi D, Fehér A, Hückelhoven R. The Arabidopsis ROP-activated receptor-like cytoplasmic kinase RLCK VI_A3 is involved in control of basal resistance to powdery mildew and trichome branching. Plant Cell Rep , 2015, 34(3): 457-468. [20] Yu DS, Yu F, Du CQ, Li XS, Zhao XY, Liu XM. RPN1a, a subunit of the 26S proteasome, controls trichome development in Arabidopsis . Plant Physiol Biochem , 2015, 88: 82-88. [21] Li JJ, Lin ZK, Chen HZ, Xu ML. The inheritance of glabrous-leaf character in rice variety Rico No.1. Acta Agric Zhejiangensis , 1993, 5(4): 233-234. 李金军, 林正魁, 陈鸿藻, 徐美玲. 水稻品种Rico No.1光叶特性的遗传. 浙江农业学报, 1993, 5(4): 233-234. [22] Qian Q, He P, Zheng XW, Chen Y, Zhu LH. Genetic analysis of morphological index and its related taxonomic traits for classification of indica/japonica rice. Sci China Ser C , 2000, 43(2): 113-119. [23] Li WQ, Wu JG, Weng SL, Zhang DP, Zhang YJ, Shi CH. Characterization and fine mapping of the glabrous leaf and hull mutants ( gl1 ) in rice ( Oryza sativa L.). Plant Cell Rep , 2010, 29(6): 617-627. [24] Hong J, Wang QZ, Fu HW, Wu DX, Shu QY. Fine mapping and candidate gene analysis of glabrous leaf and hull gene ( gl 1) in rice ( Oryza sativa L.). J Nucl Agric Sci , 2011, 25(6): 1088-1093. 洪隽, 王启钊, 富昊伟, 吴殿星, 舒庆尧. 水稻光叶性状基因 gl 1的精细定位与候选基因分析. 核农学报, 2011, 25(6): 1088-1093. [25] Li JJ, Yuan YD, Lu ZF, Yang LS, Gao RC, Lu JG, Li JY, Xiong GS. Glabrous Rice 1 , encoding a homeodomain protein, regulates trichome development in rice. Rice , 2012, 5: 32. [26] Zhang HL, Wu K, Wang YF, Peng Y, Hu FY, Wen L, Han B, Qian Q, Teng S. A WUSCHEL -like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice. Rice , 2012, 5: 30. [27] Angeles-Shim RB, Asano K, Takashi T, Shim J, Kuroha T, Ayano M, Ashikari M. A WUSCHEL-related homeobox 3B gene, depilous ( dep ), confers glabrousness of rice leaves and glumes. Rice , 2012, 5: 28. [28] Wang YP, Chen WL, Qin P, Huang YY, Ma BT, Ouyang XH, Chen XW, Li SG. Characterization and fine mapping of GLABROUS RICE 2 in rice. J Genet Genomics , 2013, 40(11): 579-582. [29] Zeng YH, Zhu YS, Lian L, Xie HG, Zhang JF, Xie HA. Genetic analysis and fine mapping of the pubescence gene GL6 in rice ( Oryza sativa L.). Chin Sci Bull , 2013, 58(24): 2992-2999. [30] Dongchen WH, Zhang XL, Zhu Q, Xiong HB, Wei ZF, Lv YG, Zhang LD, Wu TF, Li W, Wu C, Chen LJ, Lee D. Cloning and subcellular localization of a new glabrous-leaf mutant gene GLL in rice ( Oryzα sativα L.). Mol Plant Breed , 2015, 13(4): 716-726. 董陈文华, 张小玲, 朱骞, 熊海波, 魏振飞, 吕永刚, 张利东, 伍腾飞, 李伟, 吴超, 陈丽娟, 李东宣. 水稻光叶突变新基因的克隆和亚细胞定位. 分子植物育种, 2015, 13(4): 716-726. [31] Zhu XB, Sun DY, Cheng BS, Hong DL. Distribution characterization of leaf and hull pubescences and genetic analysis of their numbers in japonica rice ( Oryza sativa ). Rice Sci , 2008, 15(4): 267-275. [32] Lan T, Liang KJ, Chen ZW, Duan YL, Wang JL, Ye N, Wu WR. Genetic analysis and gene mapping of cold-induced seedling chlorosis in rice. Hereditas ( Beijing ), 2007, 29(9): 1121-1125. 兰涛, 梁康迳, 陈志伟, 段远霖, 王俊兰, 叶宁, 吴为人. 水稻苗期低温失绿的遗传分析及基因定位. 遗传, 2007, 29(9): 1121-1125. [33] Ströher E, Grassl J, Carrie C, Fenske R, Whelan J, Millar AH. Glutaredoxin S15 is involved in Fe-S cluster transfer in mitochondria influencing lipoic acid-dependent enzymes, plant growth, and arsenic tolerance in Arabidopsis . Plant Physiol , 2016, 170(3): 1284-1299. [34] Walters LA, Escobar MA. The AtGRXS3/4/5/7/8 glutaredoxin gene cluster on Arabidopsis thaliana chromosome 4 is coordinately regulated by nitrate and appears to control primary root growth. Plant Signal Behav , 2016, 11(4): e1171450. [35] Yokota E, Vidali L, Tominaga M, Tahara H, Orii H, Morizane Y, Hepler PK, Shimmen T. Plant 115-kDa actin-filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells. Plant Cell Physiol , 2003, 44(10): 1088-1099. [36] Yokota E, Tominaga M, Mabuchi I, Tsuji Y, Staiger CJ, Oiwa K, Shimmen T. Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca 2+ -sensitive manner. Plant Cell Physiol , 2005, 46(10): 1690-1703. [37] Sun PL, Li S, Lu DH, Williams JS, Kao TH. Pollen S-locus F-box proteins of Petunia involved in S-RNase-based self-incompatibility are themselves subject to ubiquitin-mediated degradation. Plant J , 2015, 83(2): 213-223. [38] Noir S, Marrocco K, Masoud K, Thomann A, Gusti A, Bitrian M, Schnittger A, Genschik P. The control of Arabidopsis thaliana growth by cell proliferation and endoreplication requires the F-Box protein FBL17. Plant Cell , 2015, 27(5): 1461-1476. [39] Cardon GH, Höhmann S, Nettesheim K, Saedler H, Huijser P. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3 : a novel gene involved in the floral transition. Plant J , 1997, 12(2): 367-377. [40] Cardon G, Höhmann S, Klein J, Nettesheim K, Saedler H, Huijser P. Molecular characterisation of the Arabidopsis SBP-box genes. Gene , 1999, 237(1): 91-104. [41] Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis . Cell , 2009, 138(4): 750-759 [42] Guo AY, Zhu QH, Gu XC, Ge S, Yang J, Luo JC. Genome-wide identifification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene , 2008, 418(1-2): 1-8. [43] Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P. SPL8 , an SBP-Box gene that affects pollen sac development in Arabidopsis . Plant Cell , 2003, 15(4): 1009-1019. [44] Zhang Y, Schwarz S, Saedler H, Huijser P. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis . Plant Mol Biol , 2007, 63(3): 429-439. |