遗传 ›› 2022, Vol. 44 ›› Issue (2): 178-186.doi: 10.16288/j.yczz.22-018
• 技术与方法 • 上一篇
收稿日期:
2022-01-23
修回日期:
2022-02-02
出版日期:
2022-02-20
发布日期:
2022-02-09
通讯作者:
刘峰
E-mail:zhangtingting@ioz.ac.cn;liuf@ioz.ac.cn
作者简介:
张婷婷,在读硕士研究生,专业方向:生物工程。E-mail: 基金资助:
Tingting Zhang1,2(), Feng Liu2()
Received:
2022-01-23
Revised:
2022-02-02
Online:
2022-02-20
Published:
2022-02-09
Contact:
Liu Feng
E-mail:zhangtingting@ioz.ac.cn;liuf@ioz.ac.cn
Supported by:
摘要:
蛋白酪氨酸硫酸化(protein tyrosine sulfation, PTS)是一种重要的翻译后修饰,调控生命活动中多种生理和病理过程,但由于PTS状态不稳定且目前缺乏有效的富集方法,因此在生物样品中难以进行有效地检测。本研究以模式动物斑马鱼(Danio rerio)为研究材料,利用Orbitrap Exploris 480高分辨质谱仪检测了斑马鱼胚胎发育早期总蛋白的酪氨酸硫酸化修饰水平,通过该方法共计检测到26种蛋白(包括膜蛋白、分泌蛋白、胞质蛋白和核蛋白等)存在潜在的29个酪氨酸硫酸化修饰位点。本研究建立了斑马鱼胚胎发育早期蛋白酪氨酸硫酸化修饰的检测方法,为探索生物体蛋白硫酸化修饰的作用机制奠定了技术基础。
张婷婷, 刘峰. 斑马鱼蛋白酪氨酸硫酸化修饰的检测方法研究[J]. 遗传, 2022, 44(2): 178-186.
Tingting Zhang, Feng Liu. Study on a detection method of protein tyrosine sulfation modification in zebrafish[J]. Hereditas(Beijing), 2022, 44(2): 178-186.
表1
实验试剂"
试剂名称 | 公司 | 货号 |
---|---|---|
碳酸氢铵(NH4HCO3) | Aladdin (北京) | A110537 |
氯化铵(NH4Cl) | Aladdin (北京) | A116369 |
尿素(Urea) | Sigma-Aldrich (美国) | 33247-1KG |
碘乙酰胺(IAA) | Sigma-Aldrich (美国) | I1149-5G |
三氟乙酸(TFA) | Sigma-Aldrich (美国) | T6508 |
乙腈(ACN) | Fisher (美国) | A955-4 |
甲酸(FA) | Fisher (美国) | A117-50 |
乙酸(AcOH) | Fisher (美国) | A35-500 |
甲醇(MeOH) | Fisher (美国) | A456-4 |
二硫苏糖醇(DTT) | Nacalai (北京) | 14112-81 |
测序级胰蛋白酶(sequencing grade modified trypsin) | Promega (美国) | V5111 |
考马斯亮蓝G-250 | Solarbio (广州) | C8420 |
BCA蛋白浓度测定试剂盒 | Beyotime (上海) | P0012 |
弱阴离子交换柱(weak anion exchange column) | Waters (美国) | 186002489 |
Empore固相萃取膜片 | 3M (美国) | 2215-C18 |
无水乙醇 | 中国医药集团有限公司(北京) | 10009218 |
表4
斑马鱼胚胎中26种蛋白潜在的29个酪氨酸硫酸化修饰位点"
UniProt数据库登录号 | 蛋白名称 | 肽段序列中的酪氨酸硫酸化修饰位点 |
---|---|---|
E7F6T0 | CD44a | AGELCQSLG-Y(SO3)-R |
Q90ZL2 | Lancl1 | TGYL-Y(SO3)-SLIFVNQQFQQEK |
Q5RHM3 | Adgrf3b | VTITCSIFNSTET-Y(SO3)-K |
F1QPK1 | Myof | IPGAKTADASDTGNAEGWE-Y( SO3)-SSLIGWKFHR |
Q6NSN2 | Mao | MTANA-Y( SO3)-DVIVIGGGISGLSAAK |
A0A0H2UKT5 | Ptprfa | HNTEDSSLTTISGLVPDIT-Y(SO3)-GLR |
E9QJI4 | Si:ch211-264f5.6 | LNGTALNSSQQV-Y(SO3)-VVK |
Q5U3G0 | Pgrmc1 | LLKPGEEPTE-Y(SO3)-TDDEEVKDK |
A0A0R4IRS1 | Ap1m1 | Y(SO3)-ITQNGD-Y(SO3)-QLR |
A0A0R4INX3 | Calua | EHDDGTNFE-Y(SO3)-DHDAFLGEEEAK |
A2CEA7 | Rasgrf2 | NCNPPCVP-Y(SO3)-LGMYLTDLAFIEEGTPNFTEEGLVNFSK |
A8WGQ0 | Serpine1 | NLALSPYGIASVLGMAQMGA-Y( SO3)-GATLK |
Q8AYE3 | Serpinc1 | LFGDKSTTFNETFQHISETV-Y( SO3)-GAK |
F1QVS8 | Mybpc3 | QLEV-Y(SO3)-QSIADLTVK |
A0A068FPN9 | Ifit17c | FLQSL-Y(SO3)-VLK |
F2YWP2 | Ttll10 | FRAG-Y(SO3)-QLL-Y(SO3)-QIPNNK |
G1K2X0 | Ttn.1 | SATKDQMTIEWNEPVIDGGSSVIG-Y(SO3)-HLESK |
B8A4F1 | Si:dkey-15f17.8 | TLTQNSDLISGV-Y(SO3)-EGGLK |
A0A0R4IW46 | si:ch211-278p9.2 | ELDLS-Y(SO3)-NNPR |
Q66I37 | Nucks1a | KVVN-Y(SO3)-SQFNESDDADEDYGRK |
Q19AW4 | Nfatc1 | LALHPKP-Y(SO3)-Y(SO3)-SPPAMTPLMPTELGPCVTGPFASSPQR |
A1A5H6 | Cnot1 | MNLDSLSLALSQIS-Y(SO3)-LVDNLTKK |
A1A605 | Ybx1 | DYQEN- Y(SO3)-QSDPEAEPR |
A3QK06 | P2rx1 | TFSNFFFE-Y(SO3)-ETPR |
F1QMN6 | Spen | VNTSEGVVVLS-Y(SO3)-SGQK |
E9QD85 | Rprd1b | VQEEEEEEDDDYRGH-Y(SO3)-SPR |
[1] |
Moore KL. The biology and enzymology of protein tyrosine O-sulfation. J Biol Chem, 2003, 278(27):24243-24246.
doi: 10.1074/jbc.R300008200 |
[2] |
Yang YS, Wang CC, Chen BH, Hou YH, Hung KS, Mao YC. Tyrosine sulfation as a protein post-translational modification. Molecules, 2015, 20(2):2138-2164.
doi: 10.3390/molecules20022138 |
[3] |
Kaufmann C, Stührwohldt N, Sauter M. Tyrosylprotein sulfotransferase-dependent and -independent regulation of root development and signaling by PSK LRR receptor kinases in Arabidopsis. J Exp Bot, 2021, 72(15):5508-5521.
doi: 10.1093/jxb/erab233 |
[4] |
De Giorgi J, Fuchs C, Iwasaki M, Kim W, Piskurewicz U, Gully K, Utz-Pugin A, Mène-Saffrané L, Waridel P, Nawrath C, Longoni FP, Fujita S, Loubéry S, Lopez- Molina L. The Arabidopsis mature endosperm promotes seedling cuticle formation via release of sulfated peptides. Dev Cell, 2021, 56(22): 3066-3081.e5.
doi: 10.1016/j.devcel.2021.10.005 |
[5] |
Kehoe JW, Bertozzi CR. Tyrosine sulfation: a modulator of extracellular protein-protein interactions. Chem Biol, 2000, 7(3):R57-R61.
doi: 10.1016/S1074-5521(00)00093-4 |
[6] |
Ludeman JP, Stone MJ. The structural role of receptor tyrosine sulfation in chemokine recognition. Br J Pharmacol, 2014, 171(5):1167-1179.
doi: 10.1111/bph.12455 |
[7] |
Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayabyab M, Gerard NP, Gerard C, Sodroski J, Choe H. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell, 1999, 96(5):667-676.
pmid: 10089882 |
[8] |
Seibert C, Veldkamp CT, Peterson FC, Chait BT, Volkman BF, Sakmar TP. Sequential tyrosine sulfation of CXCR4 by tyrosylprotein sulfotransferases. Biochemistry, 2008, 47(43):11251-11262.
doi: 10.1021/bi800965m |
[9] |
Tinoco R, Otero DC, Takahashi AA, Bradley LM. PSGL-1: A new player in the immune checkpoint landscape. Trends Immunol, 2017, 38(5):323-335.
doi: 10.1016/j.it.2017.02.002 |
[10] |
Pouyani T, Seed B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell, 1995, 83(2):333-343.
pmid: 7585950 |
[11] |
Westmuckett AD, Moore KL. Lack of tyrosylprotein sulfotransferase activity in hematopoietic cells drastically attenuates atherosclerosis in Ldlr -/- mice. Arterioscler Thromb Vasc Biol, 2009, 29(11):1730-1736.
doi: 10.1161/ATVBAHA.109.192963 pmid: 19679829 |
[12] |
Stone MJ, Chuang S, Hou X, Shoham M, Zhu JZ. Tyrosine sulfation: an increasingly recognised post-translational modification of secreted proteins. N Biotechnol, 2009, 25(5):299-317.
doi: 10.1016/j.nbt.2009.03.011 |
[13] |
Stone SR, Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry, 1986, 25(16):4622-4628.
pmid: 3768302 |
[14] |
Robinson MR, Brodbelt JS. Integrating Weak Anion Exchange and Ultraviolet Photodissociation Mass Spectrometry with Strategic Modulation of Peptide Basicity for the Enrichment of Sulfopeptides. Anal Chem, 2016, 88(22):11037-11045.
doi: 10.1021/acs.analchem.6b02899 |
[15] |
Wu CC, MacCoss MJ, Howell KE, Yates JR. A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol, 2003, 21(5):532-538.
doi: 10.1038/nbt819 |
[16] |
Nagaraj N, Lu AP, Mann M, Wiśniewski JR. Detergent-based but gel-free method allows identification of several hundred membrane proteins in single LC-MS runs. J Proteome Res, 2008, 7(11):5028-5032.
doi: 10.1021/pr800412j |
[17] |
Blonder J, Xiao Z, Veenstra TD. Proteomic profiling of differentiating osteoblasts. Expert Rev Proteomics, 2006, 3(5):483-496.
doi: 10.1586/14789450.3.5.483 |
[18] |
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc, 2007, 2(8):1896-1906.
pmid: 17703201 |
[19] |
Cao L, Wu XM, Nie P, Chang MX. The negative regulation of piscine CD44c in viral and bacterial infection. Dev Comp Immunol, 2019, 96:135-143.
doi: S0145-305X(19)30032-1 pmid: 30885554 |
[20] |
Harty BL, Krishnan A, Sanchez NE, Schiöth HB, Monk KR. Defining the gene repertoire and spatiotemporal expression profiles of adhesion G protein-coupled receptors in zebrafish. BMC Genomics, 2015, 16(1):62.
doi: 10.1186/s12864-015-1296-8 |
[21] |
Wu XJ, Thomas P, Zhu Y. Pgrmc1 knockout impairs oocyte maturation in zebrafish. Front Endocrinol (Lausanne), 2018, 9:560.
doi: 10.3389/fendo.2018.00560 |
[22] |
Yang Y, Wang L, Han X, Yang WL, Zhang MM, Ma HL, Sun BF, Li A, Xia J, Chen J, Heng J, Wu BX, Chen YS, Xu JW, Yang X, Yao H, Sun JW, Lyu C, Wang HL, Huang Y, Sun YP, Zhao YL, Meng AM, Ma JB, Liu F, Yang YG. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell, 2019, 75(6): 1188-1202.e11.
doi: 10.1016/j.molcel.2019.06.033 |
[23] |
Hodatsu A, Konno T, Hayashi K, Funada A, Fujita T, Nagata Y, Fujino N, Kawashiri MA, Yamagishi M. Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder MYBPC3 mutation: evidence from patients and zebrafish models. Am J Physiol Heart Circ Physiol, 2014, 307(11):H1594-H1604.
doi: 10.1152/ajpheart.00637.2013 |
[24] | Grundt K, Haga IV, Huitfeldt HS, Ostvold AC. Identification and characterization of two putative nuclear localization signals (NLS) in the DNA-binding protein NUCKS. Biochim Biophys Acta, 2007, 1773(9):1398-1406. |
[25] |
Hu YW, Wu XM, Ren SS, Cao L, Nie P, Chang MX. NOD1 deficiency impairs CD44a/Lck as well as PI3K/Akt pathway. Sci Rep, 2017, 7(1):2979.
doi: 10.1038/s41598-017-03258-y |
[26] | Chen YH, Pai CW, Huang SW, Chang SN, Lin LY, Chiang FT, Lin JL, Hwang JJ, Tsai CT. Inactivation of Myosin binding protein C homolog in zebrafish as a model for human cardiac hypertrophy and diastolic dysfunction. J Am Heart Assoc, 2013, 2(5):e000231. |
[27] |
Liu TA, Yasuda S, Williams FE, Liu MY, Suiko M, Sakakibara Y, Yang YS, Liu MC. A target-specific approach for the identification of tyrosine-sulfated hemostatic proteins. Anal Biochem, 2009, 390(1):88-90.
doi: 10.1016/j.ab.2009.04.002 |
[28] |
Lassen KS, Bradbury ARM, Rehfeld JF, Heegaard NHH. Microscale characterization of the binding specificity and affinity of a monoclonal antisulfotyrosyl IgG antibody. Electrophoresis, 2008, 29(12):2557-2564.
doi: 10.1002/elps.200700908 pmid: 18494034 |
[29] |
Zhou WB, Duckworth BP, Geraghty RJ. Fluorescent peptide sensors for tyrosylprotein sulfotransferase activity. Anal Biochem, 2014, 461:1-6.
doi: 10.1016/j.ab.2014.05.025 |
[30] |
Niehrs C, Huttner WB. Purification and characterization of tyrosylprotein sulfotransferase. EMBO J, 1990, 9(1):35-42.
pmid: 2295314 |
[31] |
Edelson-Averbukh M, Shevchenko A, Pipkorn R, Lehmann WD. Discrimination between peptide O-sulfo- and O-phosphotyrosine residues by negative ion mode electrospray tandem mass spectrometry. J Am Soc Mass Spectrom, 2011, 22(12):2256-2268.
doi: 10.1007/s13361-011-0248-z |
[32] |
Salek M, Costagliola S, Lehmann WD. Protein tyrosine- O-sulfation analysis by exhaustive product ion scanning with minimum collision offset in a NanoESI Q-TOF tandem mass spectrometer. Anal Chem, 2004, 76(17):5136-5142.
doi: 10.1021/ac0400414 |
[33] |
Nguyen J, Russell SC. Targeted proteomics approach to species-level identification of Bacillus thuringiensis spores by AP-MALDI-MS. J Am Soc Mass Spectrom, 2010, 21(6):993-1001.
doi: 10.1016/j.jasms.2010.01.032 |
[34] |
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods, 2009, 6(5):359-362.
doi: 10.1038/nmeth.1322 pmid: 19377485 |
[35] |
Wiśniewski JR, Zougman A, Mann M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res, 2009, 8(12):5674-5678.
doi: 10.1021/pr900748n pmid: 19848406 |
[1] | 李凯伦, 卢荆奥, 陈小辉, 张文清, 刘伟. 尿囊素促进破骨细胞缺陷斑马鱼骨折修复[J]. 遗传, 2023, 45(4): 341-353. |
[2] | 卢荆澳, 黄春燕, 林芷茵, 唐政, 马宁, 黄志斌. cd99l2基因调控斑马鱼白细胞组织间的迁移机制[J]. 遗传, 2022, 44(9): 798-809. |
[3] | 郑鹏飞, 谢海波, 朱盼盼, 赵呈天. 斑马鱼神经底板处神经元的分布及特征[J]. 遗传, 2022, 44(6): 510-520. |
[4] | 贾婷婷, 雷蕾, 吴歆媛, 蔡顺有, 陈艺璇, 薛钰. 二甲双胍对斑马鱼骨骼发育及损伤修复的机制研究[J]. 遗传, 2022, 44(1): 68-79. |
[5] | 郭佳妮, 刘帆, 王璐. 斑马鱼血液疾病模型及应用[J]. 遗传, 2020, 42(8): 725-738. |
[6] | 熊凤,谢训卫,潘鲁媛,李阔宇,柳力月,张昀,李玲璐,孙永华. 国家斑马鱼资源中心的资源、技术和服务建设[J]. 遗传, 2018, 40(8): 683-692. |
[7] | 许璟瑾, 张文娟, 王静怡, 姚丽云, 潘裕添, 欧一新, 薛钰, . 金线莲抑制斑马鱼黑色素形成的活性组分筛选及机理研究[J]. 遗传, 2017, 39(12): 1178-1187. |
[8] | 刘姗姗, 张翠珍, 彭刚. 饥饿对幼年斑马鱼下丘脑摄食相关性神经肽表达的影响[J]. 遗传, 2016, 38(9): 821-830. |
[9] | 张峰华,王厚鹏,黄思雨,熊凤,朱作言,孙永华. 两种密码子优化的Cas9编码基因在斑马鱼胚胎中基因敲除效率的比较[J]. 遗传, 2016, 38(2): 144-154. |
[10] | 顾爱华 严丽锋. 斑马鱼在再生医学研究中的应用及进展[J]. 遗传, 2013, 35(7): 856-866. |
[11] | 李礼,罗凌飞. 以斑马鱼为模式动物研究器官的发育与再生[J]. 遗传, 2013, 35(4): 421-432. |
[12] | 徐冉冉 张从伟 曹羽 王强. 缺失mir122抑制斑马鱼肝脏前体细胞向肝细胞分化[J]. 遗传, 2013, 35(4): 488-494. |
[13] | 沈延 黄鹏 张博. TALEN构建与斑马鱼基因组定点突变的实验方法与流程[J]. 遗传, 2013, 35(4): 533-544. |
[14] | 李辉辉 黄萍 董巍 朱作言 刘东. 斑马鱼研究走向生物医学[J]. 遗传, 2013, 35(4): 410-420. |
[15] | 李小泉,杜久林. 幼年斑马鱼的视觉系统与捕食行为[J]. 遗传, 2013, 35(4): 468-476. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: