遗传 ›› 2013, Vol. 35 ›› Issue (4): 421-432.doi: 10.3724/SP.J.1005.2013.00421
李礼, 罗凌飞
收稿日期:
2012-11-27
修回日期:
2013-03-21
出版日期:
2013-04-20
发布日期:
2013-04-25
通讯作者:
罗凌飞
E-mail:lluo@swu.edu.cn
基金资助:
国家自然科学基金项目(编号:30925022, 31130038, 31271568)资助
LI Li, LUO Ling-Fei
Received:
2012-11-27
Revised:
2013-03-21
Online:
2013-04-20
Published:
2013-04-25
摘要: 斑马鱼因其受精卵体外发育、胚胎透明、具有较强的再生能力以及适于大规模遗传筛选的优势, 成为研究脊椎动物器官发育与再生的新兴模式动物。通过数十年的探索, 科研工作者已经在斑马鱼中建立了一套成熟的研究方法, 并对斑马鱼胚胎发育早期的细胞命运决定和分化、组织器官的形态建成以及受损后的再生过程有了初步的认识。近年来, 随着遗传筛选技术的大规模开展和活体成像技术在斑马鱼中的深入应用, 许多在小鼠等模式动物中悬而未决的问题开始得到充分解答。随着研究的不断深化和技术的不断更新, 以斑马鱼为模式动物, 对脊椎动物器官发育与再生的研究将会更加深入, 相关的调控机制也会被逐步探明, 从而为临床相关疾病的防治提供富有价值的参考。文章通过对近年来发表的文章进行回顾, 总结了斑马鱼作为模式动物研究中枢神经系统、肝脏和胰腺、血液细胞和血管等重要器官早期发育过程及其调控机制的进展, 并阐述了以斑马鱼研究尾鳍、心脏、肝脏等器官再生的优势和初步发现。
李礼,罗凌飞. 以斑马鱼为模式动物研究器官的发育与再生[J]. 遗传, 2013, 35(4): 421-432.
LI Li, LUO Ling-Fei. Zebrafish as the model system to study organogenesis and regeneration[J]. HEREDITAS, 2013, 35(4): 421-432.
[1] Grunwald DJ, Eisen JS. Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat Rev Genet, 2002, 3(9): 717-724.[2] Chu J, Sadler KC. New school in liver development: lessons from zebrafish. Hepatology, 2009, 50(5): 1656-1663.[3] Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn, 1995, 203(3): 253-310.[4] Poss KD, Ke/ating MT, Nechiporuk A. Tales of regeneration in zebrafish. Dev Dyn, 2003, 226(2): 202-210.[5] Streisinger G, Walker C, Dower N, Knauber D, Singer F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature, 1981, 291(5813): 293-296.[6] Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C. A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 1996, 123: 37-46.[7] Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nüsslein-Volhard C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, 1996, 123: 1-36.[8] Du Ls, Xu J, Li XL, Ma N, Liu YM, Peng JR, Osato M, Zhang WQ, Wen ZL. Rumba and Haus3 are essential factors for the maintenance of hematopoietic stem/progenitor cells during zebrafish hematopoiesis. Development, 2011, 138(4): 619-629.[9] Chen J, Ruan H, Ng SM, Gao C, Soo HM, Wu W, Zhang ZH, Wen ZL, Lane DP, Peng JR. Loss of function of def selectively up-regulates Δ113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev, 2005, 19(23): 2900-2911.[10] Huang P, Xiao A, Zhou MG, Zhu ZY, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol, 2011, 29(8): 699-700.[11] King A. Researchers find their Nemo. Cell, 2009, 139(5): 843-846.[12] Zu Y, Tong XJ, Wang ZX, Liu D, Pan RC, Li Z, Hu YY, Luo Z, Huang P, Wu Q, Zhu ZY, Zhang B, Lin S. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods, 2013, doi:10.1038/nmeth.2374.[13] Hwang WY, Fu YF, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JRJ, Joung JK. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 2013, 31(3): 227-229.[14] Le GD, Redd MJ, Colucci-Guyon E, Murayama E, Kissa K, Briolat V, Mordelet E, Zapata A, Shinomiya H, Herbomel P. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood, 2008, 111(1): 132-141.[15] Zhong TP, Childs S, Leu JP, Fishman MC. Gridlock signalling pathway fashions the first embryonic artery. Nature, 2001, 414(6860): 216-220.[16] Hatta K, Tsujii H, Omura T. Cell tracking using a photoconvertible fluorescent protein. Nat Protoc, 2006, 1(2): 960-967.[17] Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods, 2009, 6(2): 153-159.[18] Jin H, Xu J, Wen ZL. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood, 2007, 109(12): 5208-5214.[19] Kohli V, Rehn K, Sumanas S. Single cell fate mapping in zebrafish. J Vis Exp, 2011, (56): 3172.[20] Herbomel P, Levraud JP. Imaging early macrophage differentiation, migration, and behaviors in live zebrafish embryos. Methods Mol Med, 2005, 105: 199-214.[21] Passeri MJ, Cinaroglu A, Gao C, Sadler KC. Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology, 2009, 49(2): 443-452.[22] Blader P, Strahle U. Zebrafish developmental genetics and central nervous system development. Hum Mol Genet, 2000, 9(6): 945-951.[23] Papan C, Campos-Ortega JA. Region-specific cell clones in the developing spinal cord of the zebrafish. Dev Genes Evol, 1999, 209(3): 135-144.[24] Mendelson B. Development of reticulospinal neurons of the zebrafish. I. Time of origin. J Comp Neurol, 1986, 251(2): 160-171.[25] Kimmel CB. Patterning the brain of the zebrafish embryo. Annu Rev Neurosci, 1993, 16: 707-732.[26] Wilson PA, Hemmati-Brivanlou A. Vertebrate neural induction: inducers, inhibitors, and a new synthesis. Neuron, 1997, 18(5): 699-710.[27] Kishimoto Y, Lee KH, Zon L, Hammerschmidt M, Schulte-Merker S. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development, 1997, 124(22): 4457-4466.[28] Dick A, Hild M, Bauer H, Imai Y, Maifeld H, Schier AF, Talbot WS, Bouwmeester T, Hammerschmidt M. Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development, 2000, 127(2): 343-354.[29] Rinkwitz S, Mourrain P, Becker TS. Zebrafish: an integrative system for neurogenomics and neurosciences. Prog Neurobiol, 2011, 93(2): 231-243.[30] Heisenberg CP, Houart C, Take-Uchi M, Rauch GJ, Young N, Coutinho P, Masai I, Caneparo L, Concha ML, Geisler R, Dale TC, Wilson SW, Stemple DL. A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev, 2001, 15(11): 1427-1434.[31] Houart C, Caneparo L, Heisenberg CP, Barth KA, Take-Uchi M, Wilson SW. Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron, 2002, 35(2): 255-265.[32] Kim CH, Oda T, Itoh M, Jiang D, Artinger KB, Chandrasekharappa SC, Driever W, Chitnis AB. Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature, 2000, 407(6806): 913-916.[33] Danesin C, Peres JN, Johansson M, Snowden V, Cording A, Papalopulu N, Houart C. Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1. Dev Cell, 2009, 16(4): 576-587.[34] Hanashima C, Fernandes M, Hebert JM, Fishell G. The role of Foxg1 and dorsal midline signaling in the generation of Cajal-Retzius subtypes. J Neurosci, 2007, 27(41): 11103-11111.[35] Hébert JM, Fishell G. The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci, 2008, 9(9): 678-885.[36] Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L. MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci, 2008, 11(6): 641- 648.[37] Tao T, Peng JR. Liver development in zebrafish (Danio rerio). J Genet Genomics, 2009, 36(6): 325-334.[38] Korzh S, Emelyanov A, Korzh V. Developmental analysis of ceruloplasmin gene and liver formation in zebrafish. Mech Dev, 2001, 103(1-2): 137-139.[39] Field HA, Ober EA, Roeser T, Stainier DYR. Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol, 2003, 253(2): 279-290.[40] Tiso N, Moro E, Argenton F. Zebrafish pancreas development. Mol Cell Endocrinol, 2009, 312(1-2): 24-30.[41] Wendik B, Maier E, Meyer D. Zebrafish mnx genes in endocrine and exocrine pancreas formation. Dev Biol, 2004, 268(2): 372-383.[42] Shin D, Shin CH, Tucker J, Ober EA, Rentzsch F, Poss KD, Hammerschmidt M, Mullins MC, Stainier DYR. Bmp and Fgf signaling are essential for liver specification in zebrafish. Development, 2007, 134(11): 2041-2050.[43] Reiter JF, Kikuchi Y, Stainier DY. Multiple roles for Gata5 in zebrafish endoderm formation. Development, 2001, 128(1): 125-135.[44] Dong PD, Munson CA, Norton W, Crosnier C, Pan XF, Gong ZY, Neumann CJ, Stainier DYR. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat Genet, 2007, 39 (3): 397-402.[45] Chung WS, Shin CH, Stainier DYR. Bmp2 signaling regulates the hepatic versus pancreatic fate decision. Dev Cell, 2008, 15(5): 738-748.[46] Huang H, Ruan H, Aw MY, Hussain A, Guo L, Gao C, Qian F, Leung T, Song HW, Kimelman D, Wen ZL, Peng JR. Mypt1-mediated spatial positioning of Bmp2-producing cells is essential for liver organogenesis. Development, 2008, 135(19): 3209-3218.[47] Song JB, Kim HJ, Gong ZY, Liu NA, Lin S. Vhnf1 acts downstream of Bmp, Fgf, and RA signals to regulate endocrine beta cell development in zebrafish. Dev Biol, 2007, 303(2): 561- 575.[48] Noël ES, Casal-Sueiro A, Busch-Nentwich E, Verkade H, Dong PDS, Stemple DL, Ober EA. Organ- specific requirements for Hdac1 in liver and pancreas formation. Dev Biol, 2008, 322(2): 237- 250.[49] Ober EA, Verkade H, Field HA, Stainier DYR. Mesodermal Wnt2b signalling positively regulates liver specification. Nature, 2006, 442(7103): 688-691.[50] Lu HQ, Ma J, Yang Y, Shi WC, Luo LF. EpCAM is an Endoderm-specific Wnt Derepressor that licenses hepatic development. Dev Cell, 2013, 24(5): 543-553.[51] Lorent K, Yeo SY, Oda T, Chandrasekharappa S, Chitnis A, Matthews RP, Pack M. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development, 2004, 131(22): 5753- 5766.[52] Bort R, Signore M, Tremblay K, Barbera JPM, Zaret KS. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev Biol, 2006, 290(1): 44-56.[53] Mayer AN, Fishman MC. Nil per os encodes a conserved RNA recognition motif protein required for morphogenesis and cytodifferentiation of digestive organs in zebrafish. Development, 2003, 130(17): 3917-3928.[54] Makky K, Tekiela J, Mayer AN. Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine. Dev Biol, 2007, 303(2): 501-513.[55] Dong PD, Provost E, Leach SD, Stainier DYR. Graded levels of Ptf1a differentially regulate endocrine and exocrine fates in the developing pancreas. Genes Dev, 2008, 22(11): 1445- 1450.[56] Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell, 2008, 132(4): 631-644.[57] Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature, 2010, 464(7285): 112-115.[58] Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF, Handin RI, Herbomel P. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity, 2006, 25(6): 963-975.[59] Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, Look AT, Kanki JP. Interplay of pu. 1 and gata1 determines myelo- erythroid progenitor cell fate in zebrafish. Dev Cell, 2005, 8(1): 97- 108.[60] Jin H, Li L, Xu J, Zhen F, Zhu L, Liu PP, Zhang M, Zhang W, Wen Z. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu. 1 expression. Blood, 2012, 119(22): 5239- 5249.[61] Li L, Jin H, Xu J, Shi YQ, Wen ZL. Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood, 2011, 117(4): 1359-1369.[62] North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, FitzGerald GA, Daley GQ, Orkin SH, Zon LI. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447(7147): 1007-1011.[63] Clements WK, Kim AD, Ong KG, Moore JC, Lawson ND, Traver D. A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature, 2011, 474(7350): 220-224.[64] Zhang YY, Jin H, Li L, Qin FXF, Wen ZL. cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis. Blood, 2011, 118(15): 4093-4101.[65] Ellertsdóttir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting HG. Vascular morphogenesis in the zebrafish embryo. Dev Biol, 2010, 341(1): 56-65.[66] Wang X, Xiong JW. Vascular endothelial cell development and underlying mechanisms. Hereditas, 2012, 34(9): 1114-1122.[67] Eriksson J, Löfberg J. Development of the hypochord and dorsal aorta in the zebrafish embryo (Danio rerio). J Morphol, 2000, 244(3): 167-176.[68] Jin SW, Beis D, Mitchell T, Chen JN, Stainier DYR. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development, 2005, 132(23): 5199-5209.[69] Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol, 2002, 248(2): 307-318.[70] Lawson ND, Vogel AM, Weinstein BM. sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell, 2002, 3 (1): 127-136.[71] Lawson ND, Mugford JW, Diamond BA, Weinstein BM. phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev, 2003, 17(11): 1346-1351.[72] Covassin LD, Villefranc JA, Kacergis MC, Weinstein BM, Lawson ND. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci USA, 2006, 103(17): 6554-6559.[73] Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development, 2001, 128(19): 3675-3683.[74] Butler MG, Isogai S, Weinstein BM. Lymphatic development. Birth Defects Res C Embryo Today, 2009, 87(3): 222-231.[75] Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. Live imaging of lymphatic development in the zebrafish. Nat Med, 2006, 12(6): 711-716.[76] Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol, 2004, 5(1): 74- 80.[77] Kreuger J, Nilsson I, Kerjaschki D, Petrova T, Alitalo K, Claesson-Welsh L. Early lymph vessel development from embryonic stem cells. Arterioscler Thromb Vasc Biol, 2006, 26(5): 1073- 1078.[78] Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC, Duckers HJ, Schulte-Merker S. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet, 2009, 41(4): 396-398.[79] Sanchez AA, Tsonis PA. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet, 2006, 7(11): 873-884.[80] Fleisch VC, Fraser B, Allison WT. Investigating regeneration and functional integration of CNS neurons: lessons from zebrafish genetics and other fish species. Biochim Biophys Acta, 2011, 1812(3): 364-380.[81] Tal TL, Franzosa JA, Tanguay RL. Molecular signaling networks that choreograph epimorphic fin regeneration in zebrafish - a mini-review. Gerontology, 2010, 56(2): 231-240.[82] Nechiporuk A, Keating MT. A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration. Development, 2002, 129(11): 2607-2617.[83] Lee Y, Hami D, De Val S, Kagermeier-Schenk B, Wills AA, Black BL, Weidinger G, Poss KD. Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins. Dev Biol, 2009, 331(2): 270-280.[84] Poss KD, Shen J, Keating MT. Induction of lef1 during zebrafish fin regeneration. Dev Dyn, 2000, 219(2): 282-286.[85] Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science, 2002, 298 (5601): 2188-2190.[86] Poss KD. Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol, 2007, 18(1): 36-45.[87] Chablais F, Veit J, Rainer G, Ja?wińska A. The zebrafish heart regenerates after cryoinjury- induced myocardial in-farction. BMC Dev Biol, 2011, 11: 21.[88] Choi WY, Poss KD. Cardiac regeneration. Curr Top Dev Biol, 2012, 100: 319-344.[89] Wang JH, Panáková D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin YF, Sabeh MK, Werdich AA, Yelon D, MacRae CA, Poss KD. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development, 2011, 138(16): 3421- 3430.[90] Lien CL, Schebesta M, Makino S, Weber GJ, Keating MT. Gene expression analysis of zebrafish heart regeneration. PLoS Biol, 2006, 4(8): e260.[91] Kim J, Wu Q, Zhang Y, Wiens KM, Huang Y, Rubin N, Shimada H, Handin RI, Chao MY, Tuan TL, Starnes VA, Lien CL. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci USA, 2010, 107(40): 17206-17210.[92] Otteson DC, Hitchcock PF. Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration. Vision Res, 2003, 43(8): 927-936.[93] Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol, 2006, 6: 36.[94] Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol, 1997, 377(4): 577-595.[95] Becker CG, Lieberoth BC, Morellini F, Feldner J, Becker T, Schachner M. L1. 1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci, 2004, 24(36): 7837-7842.[96] Bhatt DH, Otto SJ, Depoister B, Fetcho JR. Cyclic AMP-induced repair of zebrafish spinal circuits. Science, 2004, 305(5681): 254-258.[97] Guo Y, Ma L, Cristofanilli M, Hart RP, Hao A, Schachner M. Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. Neuroscience, 2011, 172: 329-341.[98] Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science, 2012, 338(6112): 1353-1356.[99] Bai XY, Kim J, Yang ZA, Jurynec MJ, Akie TE, Lee J, LeBlanc J, Sessa A, Jiang H, DiBiase A, Zhou Y, Grun-wald DJ, Lin S, Cantor AB, Orkin SH, Zon LI. TIF1gamma controls erythroid cell fate by regulating transcription elongation. Cell, 2010, 142(1): 133-143.[100] Yoshinari N, Ishida T, Kudo A, Kawakami A. Gene ex-pression and functional analysis of zebrafish larval fin fold regeneration. Dev Biol, 2009, 325(1): 71-81. |
[1] | 姜义圣,许执恒. 脑发育疾病及发病机制[J]. 遗传, 2019, 41(9): 801-815. |
[2] | 李芳,黄青芸,刘斯佳,郭忠信,熊欣欣,桂林,束会娟,黄绍明,谭国鹤,刘媛媛. Bmal1对小鼠胚胎期皮层神经元放射状迁移和轴突投射的影响[J]. 遗传, 2019, 41(6): 524-533. |
[3] | 于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
[4] | 杨鑫宇,贾振伟. 颗粒细胞EGF类因子信号通路在调控卵母细胞成熟和发育中的作用[J]. 遗传, 2019, 41(2): 137-145. |
[5] | 熊凤,谢训卫,潘鲁媛,李阔宇,柳力月,张昀,李玲璐,孙永华. 国家斑马鱼资源中心的资源、技术和服务建设[J]. 遗传, 2018, 40(8): 683-692. |
[6] | 杨志, 姚俊, 曹新. FGF信号通路在内耳发育调控和毛细胞再生中的作用[J]. 遗传, 2018, 40(7): 515-524. |
[7] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[8] | 朱亚男, 敖英, 李斌, 万阳, 汪晖. 足细胞发育异常及相关肾脏疾病研究进展[J]. 遗传, 2018, 40(2): 116-125. |
[9] | 黎伟, 秦俊, 汪晖, 陈廖斌. 表观遗传生物标志物在人类疾病早期诊治中的研究进展[J]. 遗传, 2018, 40(2): 104-115. |
[10] | 柯玉文,刘江. 动物早期胚胎发育中染色质结构的继承和重编程[J]. 遗传, 2018, 40(11): 977-987. |
[11] | 张玲, 何建波. GATA6在肝脏发育中的作用及调控机制[J]. 遗传, 2018, 40(1): 22-32. |
[12] | 王永煜,余薇,周斌. Hippo信号通路与心血管发育及疾病调控[J]. 遗传, 2017, 39(7): 576-587. |
[13] | 顾远, 张雷, 余发星. Hippo信号通路在肠道稳态、再生及癌变过程中的作用及机制[J]. 遗传, 2017, 39(7): 588-596. |
[14] | 付思玲,赵婉滢,张雯婧,宋海,季红斌,汤楠. Hippo信号通路在肺发育、再生和疾病中的功能[J]. 遗传, 2017, 39(7): 597-606. |
[15] | 李玉席, 李俊宏, 周大旺. Hippo信号通路与肝脏稳态调控及疾病发生[J]. 遗传, 2017, 39(7): 607-616. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: