[1] Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705): 1315-1317.[2] MK 沃尔德, DI 弗里德曼, SL 阿迪亚主编, 艾云灿, 孟繁梅译. 噬菌体——在细菌致病机理及生物技术中的作用. 北京: 科学出版社, 2007: 409-422.[3] Pande J, Szewczyk MM, Grover AK. Phage display: Concept, innovations, applications and future. Biotechnol Adv, 2010, 28(6): 849-858.[4] Zani ML, Moreau T. Phage display as a powerful tool to engineer protease inhibitors. Biochimie, 2010, 92(11): 1689-1704.[5] Maruyama IN, Maruyama HI, Brenner S. Lambda foo: a lambda phage vector for the expression of foreign proteins. Proc Natl Acad Sci USA, 1994, 91(17): 8273-8277.[6] Ren ZJ, Black LW, Lewis GK, Wingfield PT, Locke EG, Steven AC, Black LW. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci, 1996, 5(9): 1833-1843.[7] Rosenberg A, Griffin K, Studier FW, Mccormick M, Berg J, Novy R, Mierendorf R. T7 Select® Phage Display System: A powerful new protein display system based on bacteriophage T7. Innovations, 1996, (6): 1-6.[8] Riechmann L, Holliger P. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell, 1997, 90(2): 351-360.[9] Devlin JJ, Panganiban LC, Devlin PE. Random peptide libraries: a source of specific protein binding molecules. Science, 1990, 249(4967): 404-406.[10] Barbas CR 3rd, Kang AS, Lerner RA, Benkovic SJ. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA, 1991, 88(18): 7978-7982.[11] Russel M. Moving through the membrane with filamentous phages. Trends Microbiol, 1995, 3(6): 223-228.[12] Paschke M. Phage display systems and their applications. Appl Microbiol Biotechnol, 2006, 70(1): 2-11.[13] Cwirla SE, Peters EA, Barrett RW, Dower WJ. Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA, 1990, 87(16): 6378-6382.[14] Fuh G, Sidhu SS. Efficient phage display of polypeptides fused to the carboxy-terminus of the M13 gene-3 minor coat protein. FEBS Lett, 2000, 480(2-3): 231-234.[15] Sidhu SS, Weiss GA, Wells JA. High copy display of large proteins on phage for functional selections. J Mol Biol, 2000, 296(2): 487-495.[16] Weiss GA, Sidhu SS. Design and evolution of artificial M13 coat proteins. J Mol Biol, 2000, 300(1): 213-219.[17] Fuh G, Pisabarro MT, Li Y, Quan C, Lasky LA, Sidhu SS. Analysis of PDZ domain-ligand interactions using car-boxyl-terminal phage display. J Biol Chem, 2000, 275(28): 21486-21491.[18] Wang KC, Wang XW, Zhong PY, Luo PP. Adapter-directed display: a modular design for shuttling display on phage surfaces. J Mol Biol, 2010, 395(5): 1088-1101.[19] Gao CS, Mao SL, Lo CHL, Wirsching P, Lerner RA, Janda KD. Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci USA, 1999, 96(11): 6025-6030.[20] Hufton SE, Moerkerk PT, Meulemans EV, de Bruïne A, Arends JW, Hoogenboom HR. Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J Immunol Methods, 1999, 231(1-2): 39-51.[21] Yang F, Forrer P, Dauter Z, Conway JF, Cheng N, Cerritelli ME, Steven AC, Plückthun A, Wlodawer A. Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD. Nat Struct Biol, 2000, 7(3): 230-237.[22] Mikawa YG, Maruyama IN, Brenner S. Surface display of proteins on bacteriophage λ heads. J Mol Biol, 1996, 262(1): 21-30.[23] Sternberg N, Hoess RH. Display of peptides and proteins on the surface of bacteriophage lambda. Proc Natl Acad Sci USA, 1995, 92(5): 1609-1613.[24] Gupta A, Onda M, Pastan I, Adhya S, Chaudhary VK. High-density functional display of proteins on bacterio-phage lambda. J Mol Biol, 2003, 334(2): 241-254.[25] Dunn IS. Assembly of functional bacteriophage lambda virions incorporating C-terminal peptide or protein fusions with the major tail protein. J Mol Biol, 1995, 248(3): 497-506.[26] Qin L, Fokine A, O'Donnell E, Rao VB, Rossmann MG. Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages. J Mol Biol, 2010, 395(4): 728-741.[27] Rao VB, Black LW. Structure and assembly of bacterio-phage T4 head. Virol J, 2010, 7(1): 356.[28] Ren ZJ, Black LW. Phage T4 SOC and HOC display of biologically active, full-length proteins on the viral capsid. Gene, 1998, 215(2): 439-444.[29] Li Q, Shivachandra SB, Zhang ZH, Rao VB. Assembly of the small outer capsid protein, Soc, on bacteriophage T4: a novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid. J Mol Biol, 2007, 370(5): 1006-1019.[30] Wu JM, Tu CC, Yu XL, Zhang ML, Zhang NZ, Zhao MY, Nie WX, Ren ZJ. Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity: a powerful immunological approach. J Virol Methods, 2007, 139(1): 50-60.[31] Shivachandra SB, Rao M, Janosi L, Sathaliyawala T, Matyas GR, Alving CR, Leppla SH, Rao VB. In vitro binding of anthrax protective antigen on bacterio-phage T4 capsid surface through Hoccapsid interactions: a strategy for efficient display of large full-length proteins. Virology, 2006, 345(1): 190-198.[32] Sathaliyawala T, Rao M, Maclean DM, Birx DL, Alving CR, Rao VB. Assembly of human immunodeficiency virus (HIV) antigens on bacteriophage T4: a novel in vitro approach to construct multicomponent HIV vaccines. J Virol, 2006, 80(15): 7688-7698.[33] Malys N, Chang DY, Baumann RG, Xie D, Black LW. A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late σ factor (gp55) interaction. J Mol Biol, 2002, 319(2): 289-304.[34] Condron BG, Atkins JF, Gesteland RF. Frameshifting in gene 10 of bacteriophage T7. J Bacteriol, 1991, 173(21): 6998-7003.[35] Guntas G, Purbeck C, Kuhlman B. Engineering a protein- protein interface using a computationally designed library. Proc Natl Acad Sci USA, 2010, 107(45): 19296-19301.[36] Bugg TD, Braddick D, Dowson CG, Roper DI. Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol, 2011, 29(4): 167-173.[37] Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science, 1990, 249(4967): 386-390.[38] Caberoy NB, Zhou YX, Alvarado G, Fan XQ, Li W. Efficient identification of phosphatidylserine-binding proteins by ORF phage display. Biochem Biophys Res Commun, 2009, 386(1): 197-201.[39] Whitney MA, Crisp JL, Nguyen LT, Friedman B, Gross LA, Steinbach P, Tsien RY, Nguyen QT. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat Biotechnol, 2011, 29(4): 352-356.[40] Anandakumar S, Boosi KN, Bugatha H, Padmanabhan B, Sadhale PP. Phage displayed short peptides against cells of Candida albicans demonstrate presence of species, morphology and region specific carbohydrate epitopes. PLoS ONE, 2011, 6(2): e16868.[41] Mao HY, Graziano JJ, Chase TMA, Bentley CA, Bazirgan OA, Reddy NP, Song BD, Smider VV. Spatially addressed combinatorial protein libraries for recombinant antibody discovery and optimization. Nat Biotechnol, 2010, 28(11): 1195-1202.[42] Sørensen MD, Kristensen P. Selection of antibodies against a single rare cell present in a heterogeneous popula-tion using phage display. Nat Protoc, 2011, 6(4): 509-522.[43] Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen YM, Finkle D, Venook R, Wu XM, Ridgway J, Schahin-Reed D, Dow GJ, Shelton A, Stawicki S, Watts RJ, Zhang J, Choy R, Howard P, Kadyk L, Yan MH, Zha JP, Callahan CA, Hymowitz SG, Siebel CW. Therapeutic antibody targeting of individual Notch receptors. Nature, 2010, 464(7291): 1052-1122.[44] Rizk SS, Paduch M, Heithaus JH, Duguid EM, Sandstrom A, Kossiakoff AA. Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nat Struct Mol Biol, 2011, 18(4): 437-442.[45] Luck K, Trave G. Phage display can select over-hydrophobic sequences that may impair prediction of natural domain-peptide interactions. Bioinformatics, 2011, 27(7): 899-902.[46] Govarts C, Somers K, Stinissen P, Somers V. Frameshifting in the p6 cDNA phage display system. Molecules, 2010, 15(12): 9380-9390.[47] Løset GÅ, Roos N, Bogen B, Sandlie I. Expanding the versatility of phage display II: improved affinity selection of folded domains on protein VII and IX of the filamentous phage. PLoS ONE, 2011, 6(2): e17433.[48] Løset GÅ, Bogen B, Sandlie I. Expanding the versatility of phage display I: efficient display of peptidetags on protein VII of the filamentous phage. PLoS ONE, 2011, 6(2): e14702.[49] Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov, 2010, 9(10): 767-774.[50] Ernst A, Gfeller D, Kan ZY, Seshagiri S, Kim PM, Bader GD, Sidhu SS. Coevolution of PDZ domain-ligand inter-actions analyzed by high-throughput phage display and deep sequencing. Mol Biosyst, 2010, 6(10): 1782-1790.[51] Beghetto E, De Paolis F, Montagnani F, Cellesi C, Gargano N. Discovery of new Mycoplasma pneumo-niae antigens by use of a whole-genome lambda display library. Microbes Infect, 2009, 11(1): 66-73.[52] Bradbury ARM, Sidhu S, Dübel S, Mccafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol, 2011, 29(3): 245-254.[53] Tong AHY, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CWV, Fields S, Boone C, Cesareni G. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science, 2002, 295(5553): 321-324.[54] Fogg PCM, Rigden DJ, Saunders JR, Mccarthy AJ, Allison HE. Characterization of the relationship between integrase, excisionase and antirepressor activities associated with a superinfecting Shiga toxin encoding bacteriophage. Nucleic Acids Res, 2011, 39(6): 2116-2129.[55] van Dorst B, Mehta J, Rouah-Martin E, De Coen W, Blust R, Robbens J. The identification of cellular targets of 17β estradiol using a lytic (T7) cDNA phage display approach. Toxicol in Vitro, 2011, 25(1): 388-393. |