遗传 ›› 2013, Vol. 35 ›› Issue (4): 459-467.doi: 10.3724/SP.J.1005.2013.00459
李方方, 李文庆, 荆清
收稿日期:
2012-05-08
修回日期:
2012-08-24
出版日期:
2013-04-20
发布日期:
2013-04-25
通讯作者:
荆清
E-mail:qjing@sibs.ac.cn
基金资助:
国家自然科学基金重点项目(编号:81130005)资助
LI Fang-Fang, LI Wen-Qing, JING Qing
Received:
2012-05-08
Revised:
2012-08-24
Online:
2013-04-20
Published:
2013-04-25
摘要: 血管发育包括血管发生和血管生成两个阶段。近年研究表明, G蛋白偶联受体广泛参与调控成血管细胞的分化、迁移和接合, 尖端细胞和柄细胞命运决定, 内皮细胞的增殖、迁移和管腔形成等多个过程。文章以血管发育中的这些关键事件为主线, 总结了G蛋白偶联受体家族成员特别是视紫红质类和卷曲类受体在调节血管发育方面的最新研究进展。文章着重介绍了斑马鱼作为模式生物在血管发育生物学研究中的独特优势, 并展望了利用斑马鱼深入开展G蛋白偶联受体相关研究的广阔前景。
李方方 李文庆 荆清. G蛋白偶联受体在血管发育中的作用[J]. 遗传, 2013, 35(4): 459-467.
LI Fang-Fang, LI Wen-Qing, JING Qing. G protein-coupled receptors in vascular development[J]. HEREDITAS, 2013, 35(4): 459-467.
[1] Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473 (7347): 298-307.[2] Adams RH, Alitalo K. Molecular regulation of angiogene-sis and lymphangiogenesis. Nat Rev Mol Cell Biol, 2007, 8(6): 464-478.[3] You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII tran-scription factor regulates vein identity. Nature, 2005, 435(7038): 98-104.[4] Geudens I, Gerhardt H. Coordinating cell behaviour during blood vessel formation. Development, 2011, 138(21): 4569-4583.[5] Herbert SP, Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol, 2011, 12(9): 551-564.[6] Krishnan A, Almén MS, Fredriksson R, Schiöth HB. The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS One, 2012, 7(1): e29817.[7] Liapakis G, Cordomi A, Pardo L. The G-protein coupled receptor family: actors with many faces. Curr Pharm Des, 2012, 18(2): 175-185.[8] Lappano R, Maggiolini M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov, 2011, 10(1): 47-60.[9] Rivera-Lopez CM, Tucker AL, Lynch KR. Lysophos-phatidic acid (LPA) and angiogenesis. Angiogenesis, 2008, 11(3): 301-310.[10] Liu YJ, Wada R, Yamashita T, Mi YD, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, Liu CH, Hla T, Spiegel S, Proia RL. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest, 2000, 106(8): 951-961.[11] Yukiura H, Hama K, Nakanaga K, Tanaka M, Asaoka Y, Okudaira S, Arima N, Inoue A, Hashimoto T, Arai H, Kawahara A, Nishina H, Aoki J. Autotaxin regulates vas-cular development via multiple lysophosphatidic acid (LPA) receptors in Zebrafish. J Biol Chem, 2011, 286(51): 43972-43983.[12] Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci USA, 2000, 97(24): 13384-13389.[13] Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, Kawamura S, Brown JH, Chun J. Characterization of lpa2 (Edg4) and lpa1/lpa2 (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa2. Mol Cell Biol, 2002, 22(19): 6921-6929.[14] Kranenburg O, Poland M, van Horck FP, Drechsel D, Hall A, Moolenaar WH. Activation of RhoA by lysophos-phatidic acid and Gα12/13 subunits in neuronal cells: induc-tion of neurite retraction. Mol Biol Cell, 1999, 10(6): 1851-1857.[15] Ye XQ, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, Suzuki H, Amano T, Kennedy G, Arai H, Aoki J, Chun J. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature, 2005, 435 (7038): 104-108.[16] Sumida H, Noguchi K, Kihara Y, Abe M, Yanagida K, Hamano F, Sato S, Tamaki K, Morishita Y, Kano MR, Iwata C, Miyazono K, Sakimura K, Shimizu T, Ishii S. LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood, 2010, 116(23): 5060-5070.[17] Teo ST, Yung YC, Herr DR, Chun J. Lysophosphatidic acid in vascular development and disease. IUBMB Life, 2009, 61(8): 791-799.[18] Rosen H, Liao JY. Sphingosine 1-phosphate pathway therapeutics: a lipid ligand-receptor paradigm. Curr Opin Chem Biol, 2003, 7(4): 461-468.[19] Uhlenbrock K, Huber J, Ardati A, Busch AE, Kostenis E. Fluid shear stress differentially regulates gpr3, gpr6, and gpr12 expression in human umbilical vein endothelial cells. Cell Physiol Biochem, 2003, 13(2): 75-84.[20] Argraves KM, Wilkerson BA, Argraves WS. Sphingos-ine-1-phosphate signaling in vasculogenesis and angio-genesis. World J Biol Chem, 2010, 1(10): 291-297.[21] Argraves KM, Wilkerson BA, Argraves WS, Fleming PA, Obeid LM, Drake CJ. Sphingosine-1-phosphate signaling promotes critical migratory events in vasculogenesis. J Biol Chem, 2004, 279(48): 50580-50590.[22] Kono M, Mi YD, Liu YJ, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL. The sphingosine-1-phosphate re-ceptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem, 2004, 279(28): 29367-29373.[23] Offermanns S, Mancino V, Revel JP, Simon MI. Vascular system defects and impaired cell chemokinesis as a result of Gα13 deficiency. Science, 1997, 275(5299): 533-536.[24] Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, 12(2): 121-127.[25] Hristov M, Zernecke A, Liehn EA, Weber C. Regulation of endothelial progenitor cell homing after arterial injury. Thromb Haemost, 2007, 98(2): 274-277.[26] Sainz J, Sata M. CXCR4, a key modulator of vascular progenitor cells. Arterioscler Thromb Vasc Biol, 2007, 27(2): 263-265.[27] Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Ni-shikawa S, Kishimoto T, Nagasawa T. The chemokine re-ceptor CXCR4 is essential for vascularization of the gas-trointestinal tract. Nature, 1998, 393(6685): 591-594.[28] Siekmann AF, Standley C, Fogarty KE, Wolfe SA, Lawson ND. Chemokine signaling guides regional patterning of the first embryonic artery. Genes Dev, 2009, 23(19): 2272-2277.[29] Walenta KLH, Bettink S, Böhm M, Friedrich EB. Differ-ential chemokine receptor expression regulates functional specialization of endothelial progenitor cell subpopulations. Basic Res Cardiol, 2011, 106(2): 299-305.[30] Schulte G, Bryja V. The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci, 2007, 28(10): 518-525.[31] Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM, Iruela-Arispe ML, Adams RH, Dejana E. The Wnt/β-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell, 2010, 18(6): 938-949.[32] Siekmann AF, Lawson ND. Notch signalling limits angio-genic cell behaviour in developing zebrafish arteries. Nature, 2007, 445(7129): 781-784.[33] Roca C, Adams RH. Regulation of vascular morphogenesis by Notch signaling. Genes Dev, 2007, 21(20): 2511-2524.[34] Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, Duarte A, Pytowski B, Adams RH. Notch-dependent VEGFR3 upregulation allows angio-genesis without VEGF-VEGFR2 signalling. Nature, 2012, 484(7392): 110-114.[35] Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, Ondr JK, Rao S, Lang RA, Thurston G, Gerhardt H. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell, 2009, 16(1): 70-82.[36] del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker JS, Larrivee B, Breant C, Duarte A, Takakura N, Fukamizu A, Penninger J, Eichmann A. Identification and functional analysis of endothelial tip cell-enriched genes. Blood, 2010, 116(19): 4025-4033.[37] Strasser GA, Kaminker JS, Tessier-Lavigne M. Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood, 2010, 115(24): 5102-5110.[38] Bussmann, J, Wolfe SA, Siekmann AF. Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development, 2011, 138(9): 1717-1726.[39] Panetti TS, Nowlen J, Mosher DF. Sphingos-ine-1-phosphate and lysophosphatidic acid stimulate en-dothelial cell migration. Arterioscler Thromb Vasc Biol, 2000, 20(4): 1013-1019.[40] Avraamides C, Bromberg ME, Gaughan JP, Thomas SM, Tsygankov AY, Panetti TS. Hic-5 promotes endothelial cell migration to lysophosphatidic acid. Am J Physiol Heart Circ Physiol, 2007, 293(1): H193-H203.[41] Ptaszynska MM, Pendrak ML, Stracke ML, Roberts DD. Autotaxin signaling via lysophosphatidic acid receptors contributes to vascular endothelial growth factor-induced endothelial cell migration. Mol Cancer Res, 2010, 8(3): 309-321.[42] Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, Volpi M, Sha'afi RI, Hla T. Vascular endothelial cell adherens junction assembly and morphogenesis in-duced by sphingosine-1-phosphate. Cell, 1999, 99(3): 301-312.[43] Du W, Takuwa N, Yoshioka K, Okamoto Y, Gonda K, Su-gihara K, Fukamizu A, Asano M, Takuwa Y. S1P2, the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Res, 2010, 70(2): 772-781.[44] Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T. Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest, 2007, 117(9): 2506-2516.[45] Kiefer F, Siekmann AF. The role of chemokines and their receptors in angiogenesis. Cell Mol Life Sci, 2011, 68(17): 2811-2830.[46] Strieter RM, Burdick MD, Gomperts BN, Belperio JA, Keane MP. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev, 2005, 16(6): 593-609.[47] Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol, 2000, 165(9): 5269-5277.[48] Devalaraja RM, Nanney LB, Qian QH, Du JG, Yu YC, Devalaraja MN, Richmond A. Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol, 2000, 115(2): 234-244.[49] Ara T, Tokoyoda K, Okamoto R, Koni PA, Nagasawa T. The role of CXCL12 in the organ-specific process of ar-tery formation. Blood, 2005, 105(8): 3155-3161.[50] Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Pryk-hozhij S, Peri F, Wilson SW, Ruhrberg C. Tissue macro-phages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induc-tion. Blood, 2010, 116(5): 829-840.[51] Xu H, Echemendia N, Chen SH, Lin F. Identification and expression patterns of members of the protease-activated receptor (PAR) gene family during zebrafish development. Dev Dyn, 2011, 240(1): 278-287.[52] Griffin CT, Srinivasan Y, Zheng YW, Huang W, Coughlin SR. A role for thrombin receptor signaling in endothelial cells during embryonic development. Science, 2001, 293 (5535): 1666-1670.[53] Zania P, Kritikou S, Flordellis CS, Maragoudakis ME, Tsopanoglou NE. Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: as-sociation with endothelial cell growth suppression and in-duction of apoptosis. J Pharmacol Exp Ther, 2006, 318(1): 246-254.[54] Ma L, Perini R, McKnight W, Dicay M, Klein A, Hollen-berg MD, Wallace JL. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from hu-man platelets. Proc Natl Acad Sci USA, 2005, 102(1): 216-220.[55] Walther T, Menrad A, Orzechowski HD, Siemeister G. Paul M, Schirner M. Differential regulation of in vivo an-giogenesis by angiotensin II receptors. Faseb J, 2003, 17(14): 2061-2067.[56] Carbajo-Lozoya J, Lutz S, Feng YX, Kroll J, Hammes HP, Wieland T. Angiotensin II modulates VEGF-driven an-giogenesis by opposing effects of type 1 and type 2 receptor stimulation in the microvascular endothelium. Cell Signal, 2012, 24(6): 1261-1269.[57] Eyries M, Siegfried G, Ciumas M, Montagne K, Agrapart M, Lebrin F, Soubrier F. Hypoxia-induced apelin expres-sion regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res, 2008, 103(4): 432-440.[58] Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura O, Fujino M. Molecular properties of apelin: tissue distribu-tion and receptor binding. Biochim Biophys Acta, 2001, 1538(2-3): 162-171.[59] Szokodi I, Tavi P, Földes G, Voutilainen-Myllylä S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysä J, Tóth M, Ruskoaho H. Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res, 2002, 91(5): 434-440.[60] Kojima Y, Kundu RK, Cox CM, Leeper NJ, Anderson JA, Chun HJ, Ali ZA, Ashley EA, Krieg PA, Quertermous T. Upregulation of the apelin-APJ pathway promotes neointima formation in the carotid ligation model in mouse. Cardiovasc Res, 2010, 87(1): 156-165.[61] Tucker B, Hepperle C, Kortschak D, Rainbird B, Wells S, Oates AC, Lardelli M. Zebrafish Angiotensin II Receptor-like 1a (agtrl1a) is expressed in migrating hypoblast, vasculature, and in multiple embryonic epithelia. Gene Expr Patterns, 2007, 7(3): 258-265.[62] Kälin RE, Kretz MP, Meyer AM, Kispert A, Heppner FL, Brandli AW. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol, 2007, 305(2): 599-614.[63] Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB, Logsdon D, Hsiao E, Stein EV, Cuttitta F, Haines DC, Nagashima K, Tessarollo L, St Croix B. GPR124, an orphan G pro-tein-coupled receptor, is required for CNS-specific vascu-larization and establishment of the blood-brain barrier. Proc Natl Acad Sci USA, 2011, 108(14): 5759-5764.[64] Sinha S, Vohra PK, Bhattacharya R, Dutta S, Sinha S, Mukhopadhyay D. Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2. J Cell Sci, 2009, 122(Pt 18): 3385-3392.[65] Shome S, Rana T, Ganguly S, Basu B, Chaki Choudhury S, Sarkar C, Chakroborty D, Dasgupta PS, Basu S. Dopamine regulates angiogenesis in normal dermal wound tissues. PLoS One, 2011, 6(9): e25215.[66] Allende ML, Yamashita T, Proia RL. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood, 2003, 102(10): 3665-3667.[67] Kidoya H, Naito H, Takakura N. Apelin induces enlarged and nonleaky blood vessels for functional recovery from ischemia. Blood, 2010, 115(15): 3166-3174.[68] Kidoya H, Ueno M, Yamada Y, Mochizuki N, Nakata M, Yano T, Fujii R, Takakura N. Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J, 2008, 27(3): 522-534.[69] Yang LV, Radu CG, Roy M, Lee S, McLaughlin J, Teitell MA, Iruela-Arispe ML, Witte ON. Vascular abnormalities in mice deficient for the G protein-coupled receptor GPR4 that functions as a pH sensor. Mol Cell Biol, 2007, 27(4): 1334-1347.[70] Young W, Mahboubi K, Haider A, Li I, Ferreri NR. Cyclooxygenase-2 is required for tumor necrosis factor-α- and angiotensin II-mediated proliferation of vascular smooth muscle cells. Circ Res, 2000, 86(8): 906-914.[71] Wang BH, Pearson T, Manning G, Donnelly R. In vitro study of thrombin on tubule formation and regulators of angiogenesis. Clin Appl Thromb Hemost, 2010, 16(6): 674-678.[72] Li YJ, Duan CL, Liu JX, Xu YG. Pro-angiogenic actions of Salvianolic acids on in vitro cultured endothelial pro-genitor cells and chick embryo chorioallantoic membrane model. J Ethnopharmacol, 2010, 131(3): 562-566.[73] Huang P, Xiao A, Zhou MG, Zhu ZY, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol, 2011, 29(8): 699-700. |
[1] | 熊凤,谢训卫,潘鲁媛,李阔宇,柳力月,张昀,李玲璐,孙永华. 国家斑马鱼资源中心的资源、技术和服务建设[J]. 遗传, 2018, 40(8): 683-692. |
[2] | 许璟瑾, 张文娟, 王静怡, 姚丽云, 潘裕添, 欧一新, 薛钰, . 金线莲抑制斑马鱼黑色素形成的活性组分筛选及机理研究[J]. 遗传, 2017, 39(12): 1178-1187. |
[3] | 刘姗姗, 张翠珍, 彭刚. 饥饿对幼年斑马鱼下丘脑摄食相关性神经肽表达的影响[J]. 遗传, 2016, 38(9): 821-830. |
[4] | 张峰华,王厚鹏,黄思雨,熊凤,朱作言,孙永华. 两种密码子优化的Cas9编码基因在斑马鱼胚胎中基因敲除效率的比较[J]. 遗传, 2016, 38(2): 144-154. |
[5] | 顾爱华 严丽锋. 斑马鱼在再生医学研究中的应用及进展[J]. 遗传, 2013, 35(7): 856-866. |
[6] | 张宝乐 高殿帅 徐银学. G蛋白偶联受体3:调控神经系统和卵泡发育的关键因子[J]. 遗传, 2013, 35(5): 578-586. |
[7] | 李礼,罗凌飞. 以斑马鱼为模式动物研究器官的发育与再生[J]. 遗传, 2013, 35(4): 421-432. |
[8] | 徐冉冉 张从伟 曹羽 王强. 缺失mir122抑制斑马鱼肝脏前体细胞向肝细胞分化[J]. 遗传, 2013, 35(4): 488-494. |
[9] | 沈延 黄鹏 张博. TALEN构建与斑马鱼基因组定点突变的实验方法与流程[J]. 遗传, 2013, 35(4): 533-544. |
[10] | 李辉辉 黄萍 董巍 朱作言 刘东. 斑马鱼研究走向生物医学[J]. 遗传, 2013, 35(4): 410-420. |
[11] | 李小泉,杜久林. 幼年斑马鱼的视觉系统与捕食行为[J]. 遗传, 2013, 35(4): 468-476. |
[12] | 孙婷 谢翔 张剑卿 包静 汤川政 雷道希 邱菊辉 王贵学. 水平回转培养对斑马鱼血管发育的影响[J]. 遗传, 2013, 35(4): 502-510. |
[13] | 张春霞 刘峰. 斑马鱼高分辨率整胚原位杂交实验方法与流程[J]. 遗传, 2013, 35(4): 522-528. |
[14] | 佟静媛,柳星峰,贾顺姬. Rbb4l促进TGF-β/Nodal信号转导和斑马鱼胚胎的背部发育[J]. 遗传, 2013, 35(4): 477-487. |
[15] | 刘新星 张雨田 张博. 构建斑马鱼心脏损伤-再生模型的手术方法[J]. 遗传, 2013, 35(4): 529-532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: