[1] Nagaharu U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap J Bot, 1935, 7: 389-452.
[2] 刘后利. 几种芸薹属油菜的起源和进化. 作物学报, 1984, 10(1): 9-17.
[3] Beilstein MA, Al-Shehbaz IA, Kellogg EA. Brassicaceae phylogeny and trichome evolution. Am J Bot, 2006, 93(4): 607-619.
[4] Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet, 1989, 5(4): 103-107.
[5] Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet, 2007, 8(12): 973-982.
[6] Kapitonov VV, Jurka J. Rolling-circle transposons in eu-karyotes. Proc Natl Acad Sci USA, 2001, 98(15): 8714-8719.
[7] Kashkush K, Feldman M, Levy AA. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet, 2003, 33(1): 102-106.
[8] Kashkush K, Khasdan V. Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics, 2007, 177(4): 1975-1985.
[9] White SE, Habera LF, Wessler SR. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA, 1994, 91(25): 11792-11796.
[10] Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D. A distal en-hancer and an ultraconserved exon are derived from a novel retroposon. Nature, 2006, 441(7089): 87-90.
[11] Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 2008, 319(5869): 1527-1530.
[12] Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR. Un-expected consequences of a sudden and massive transpo-son amplification on rice gene expression. Nature, 2009, 461(7267): 1130-1134.
[13] 廖鸣娟, 董爱华, 王正栋, 朱睦元. 植物转座子及其在功能基因组学中的应用. 遗传, 2000, 22(5): 345-348.
[14] Zabala G, Vodkin L. A putative autonomous 20.5 kb- CACTA transposon insertion in an F3'H allele identifies a new CACTA transposon subfamily in Glycine max. BMC Plant Biol, 2008, 8: 124.
[15] Xu M, Brar HK, Grosic S, Palmer RG, Bhattacharyya MK. Excision of an active CACTA-Like transposable element from DFR2 causes variegated flowers in soybean
[Glycine max (L.) Merr.]. Genetics, 2010, 184(1): 53-63.
[16] Masson P, Surosky R, Kingsbury JA, Fedoroff NV. Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics, 1987, 177(1): 117-137.
[17] Martienssen R, Barkan A, Taylor WC, Freeling M. Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes Dev, 1990, 4(3): 331-343.
[18] Puig M, Cáceres M, Ruiz A. Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA. Proc Natl Acad Sci USA, 2004, 101(24): 9013-9018.
[19] The Brassica rapa Genome Sequencing Project Consor-tium, Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY, Bai YQ, Mun JH, Bancroft I, Cheng F, Huang SW, Li XX, Hua W, Wang JY, Wang XY, Freeling M, Pires JC, Pater-son AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong CB, Song C, Duran CF, Peng CF, Geng CY, Koh C, Lin CY, Edwards D, Mu DS, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang HB, Wang HP, Belcram H, Zhou HL, Hirakawa H, Abe H, Guo H, Wang H, Jin HZ, Parkin IA, Batley J, Kim JS, Just J, Li JW, Xu JH, Deng J, Kim JA, Li JP, Yu JY, Meng JL, Wang JP, Min JM, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao MX, Jin MN, Ram-chiary N, Drou N, Berkman PJ, Cai QL, Huang QF, Li RQ, Tabata S, Cheng SF, Zhang S, Zhang SJ, Huang SM, Sato S, Sun SL, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li YR, Du YC, Liao YC, Lim Y, Narusaka Y, Wang YP, Wang ZY, Li ZY, Wang ZW, Xiong ZY, Zhang ZH. The genome of the mesopoly-ploid crop species Brassica rapa. Nat Genet, 2011, 43(10): 1035-1039.
[20] Cheng F, Liu SY, Wu J, Fang L, Sun SL, Liu B, Li PX, Hua W, Wang XW. BRAD, the genetics and genomics da-tabase for Brassica plants. BMC Plant Biol, 2011, 11: 136.
[21] Http://ocri-genomics.org/BrassicaTEdb.
[22] Zhao M, Du J, Lin F, Tong C, Yu J, Huang S, Wang X, Liu S, Ma J. Shifts in evolutionary rate and intensity of puri-fying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication. Plant J, 2013.
[23] Cokus SJ, Feng SH, Zhang XY, Chen ZG, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 2008, 452(7184): 215-219.
[24] Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA, 2011, 108(6): 2322-2327.
[25] Devos KM, Brown JKM, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res, 2002, 12(7): 1075-1079.
[26] Ma JX, Devos KM, Bennetzen JL. Analyses of LTR-Retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res, 2004, 14(5): 860-869.
[27] Tian ZX, Rizzon C, Du JC, Zhu LC, Bennetzen JL, Jackson SA, Gaut BS, Ma JX. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res, 2009, 19(12): 2221-2230. |