[1] Giuffra E, Kijas JMH, Amarger V, Carlborg Ö, Jeon JT, Andersson L. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics, 2000, 154(4): 1785-1791.[2] Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG. Recent and ongoing selection in the human genome. Nat Rev Genet, 2007, 8(11): 857-868.[3] Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics, 1987, 116(1): 153-159.[4] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123(3): 585-595.[5] Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics, 1993, 133(3): 693-709.[6] Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics, 2000, 155(3): 1405-1413.[7] Li WH, Wu CI, Luo CC. A new method for estimating synonymous and nonsynonymous rates of nucleotide sub-stitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol, 1985, 2(2): 150-174.[8] McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature, 1991, 351(6328): 652-654.[9] Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES. Detecting recent positive selection in the human genome from hap-lotype structure. Nature, 2002, 419(6909): 832-837.[10] Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics, 1973, 74(1): 175-195.[11] Wright S. Isolation by distance. Genetics, 1943, 28(2): 114-138.[12] Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NH, Zody MC, Anderson N, Biagi TM, Patterson N, Piel-berg GR, Kulbokas EJ 3rd, Comstock KE, Keller ET, Mesirov JP, von Euler H, Kämpe O, Hedhammar Å, Lander ES, Andersson G, Andersson L, Lindblad-Toh K. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet, 2007, 39(11): 1321-1328.[13] Pariset L, Joost S, Marsan PA, Valentini A, Econogene Consortium (EC). Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean. BMC Genet, 2009, 10: 7.[14] Wahlberg P, Carlborg Ö, Foglio M, Tordoir X, Syvänen AC, Lathrop M, Gut IG, Siegel PB, Andersson L. Genetic analysis of an F2 intercross between two chicken lines divergently selected for body-weight. BMC Genomics, 2009, 10(1): 248.[15] Flori L, Fritz S, Jaffrézic F, Boussaha M, Gut I, Heath S, Foulley JL, Gautier M. The genome response to artificial selection: a case study in dairy cattle. PloS One, 2009, 4(8): e6595.[16] Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B, McCulloch R, Whan V, Giet-zen K, Paiva S, Barendse W, Ciani E, Raadsma H, McE-wan J, Dalrymple B; International Sheep Genomics Con-sortium Members. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol, 2012, 10(2): e1001258.[17] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81(3): 559-575.[18] Rousset F. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour, 2008, 8(1): 103-106.[19] Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38(6): 1358-1370.[20] Wright S. Ev |