[1] Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling: the new wave? Trends Plant Sci, 2011, 16(6): 300-309.[2] Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci, 2004, 9(10): 490-498.[3] 苗雨晨, 白玲, 苗琛, 陈珈, 宋纯鹏. 植物谷胱甘肽过氧化物酶研究进展. 植物学通报, 2005, 22(3): 350-356.[4] Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 2002, 53(372): 1305-1319.[5] Panchuk II, Volkov RA, Schoeffl F. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol, 2002, 129(2): 838-853.[6] Narendra S, Venkataramani S, Shen GX, Wang J, Pasapula V, Lin Y, Kornyeyev D, Holaday AS, Zhang H. The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot, 2006, 57 (12): 3033-3042.[7] Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M. Analysis of the molecular evolutionary his-tory of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol, 2004, 59(6): 761-770.[8] Teixeira FK, Menezes-Benavente L, Galvão VC, Margis R, Margis-Pinheiro M. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms local-ized in different subcellular compartments. Planta, 2006, 224(2): 300-314.[9] Yoshimura K, Ishikawa T, Nakamura Y, Tamoi M, Takeda T, Tada T, Nishimura K, Shigeoka S. Comparative study on recombinant chloroplastic and cytosolic ascorbate per-oxidase isozymes of spinach. Arch Biochem Bio-phys, 1998, 353(1): 55-63.[10] D'arcy-Lameta A, Ferrari-Iliou R, Contour-Ansel1 D, Phamhi AT, Zuily-Fodil Y. Isolation and characteriza-tion of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves. Ann Bot, 2006, 97(1): 133-140.[11] Welinder KG. Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol, 1992, 2(3): 388-393.[12] Raven EL. Understanding functional diversity and sub-strate specificity in haem peroxidases: what can we learn from ascorbate peroxidase? Nat Prod Rep, 2003, 20(4): 367-381.[13] Sharp KH, Moody PCE, Brown KA, Raven EL. Crystal structure of the ascorbate peroxidase- salicylhydroxamic acid complex. Biochemistry, 2004, 43(27): 8644-8651.[14] Sharp KH, Mewies M, Moody PCE, Raven EL. Crystal structure of the ascorbate peroxidase- ascorbate complex. Nat Struct Biol, 2003, 10(4): 303-307.[15] Lad L, Mewies M, Raven EL. Substrate binding and cata-lytic mechanism in ascorbate peroxidase: Evidence for two ascorbate binding sites. Biochemistry, 2002, 41(46): 13774- 13781.[16] Macdonald IK, Badyal SK, Ghamsari L, Moody PCE, Raven EL. Interaction of ascorbate peroxidase with sub-strates: A mechanistic and structural analysis. Biochemistry, 2006, 45(25): 7808- 7817.[17] Barrows TP, Poulos TL. Role of electrostatics and salt bridges in stabilizing the compound I radical in ascorbate peroxidase. Biochemistry, 2005, 44(43): 14062-14068.[18] Asada K. The water-water cycle in chloroplasts: scaveng-ing of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50(1): 601-639.[19] Hwang JE, Lim CJ, Chen H, Je JY, Song C, Lim CO. Overexpression of Arabidopsis Dehydra- tion-Responsive Element-Binding Protein 2C Confers Tolerance to Oxidative Stress. Mol Cells, 2012, 33(2): 135-140.[20] Larkindale J, Vierling E. Core genome responses involved in acclimation to high temperature. Plant Physiol, 2008, 146(2): 748-761.[21] Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S. Expres-sion of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol, 2000, 123(1): 223- 233.[22] Kim DW, Shibato J, Agrawal GK, Fujihara S, Iwahashi H, Kim DH, Shim LS, Rakwal R. Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol Cells, 2007, 24(1): 45-59.[23] Yabuta Y, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S. Two distinct redox signaling pathways for cytosolic APX induction under photooxidative stress. Plant Cell Physiol, 2004, 45(11): 1586-1594.[24] Chang CCC, Ball L, Fryer MJ, Baker NR, Karpinski S, Mullineaux PM. Induction of ASCORBATE PEROXIDASE 2 expression in wounded Arabidopsis leaves does not involve known wound- signalling pathways but is associated with changes in photosynthesis. Plant J, 2004, 38(3): 499-511.[25] Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S. Thylakoid membrane-bound ascorbate per-oxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J, 2002, 32(6): 915-925.[26] Davletova S, Rizhsky L, Liang HJ, Zhong SQ, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, 2005, 17(1): 268-281.[27] Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S. Arabidopsis heat shock transcrip-tion factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2006, 48(4): 535-547.[28] Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S. Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant Cell Physiol, 2007, 48(7): 1036-1049.[29] Storozhenko S, De Pauw P, Van Montagu M, Inzé D, Kushnir S. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol, 1998, 118 (3): 1005-1014.[30] Volkov RA, Panchuk II, Mullineaux PM, Schöeffl F. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol, 2006, 61(4-5): 733-746.[31] Ishikawa T, Sakai K, Yoshimura K, Takeda T, Shigeoka S. cDNAs encoding spinach stromal and thyla-koid-bound ascorbate peroxidase, differing in the presence or absence of their 3’-coding regions. FEBS Lett, 1996, 384(3): 289-293.[32] Ishikawa T, Yoshimura K, Tamoi M, Takeda T, Shigeoka S. Alternative mRNA splicing of 3’- terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts. Biochem J, 1997, 328(Pt3): 795-800.[33] Yoshimura K, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S. Alternatively spliced mRNA variants of chloroplast ascorbate peroxidase isoenzymes in spinach leaves. Biochem J, 1999, 338 (Pt1): 41-48.[34] Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S. Identification of a cis element for tissue- specific alternative splicing of chloroplast ascorbate peroxidase pre-mRNA in higher plants. J Biol Chem, 2002, 277(43): 40623-40632.[35] Madhusudhan R, Ishikawa T, Sawa Y, Shigeoka S, Shibata H. Characterization of an ascorbate peroxidase in plastids of tobacco BY-2 cells. Physiol Plantarum, 2003, 117(4): 550- 557.[36] Wang BB, Brendel V. Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA, 2006, 103(18): 7175-7180.[37] Savaldi-Goldstein S, Aviv D, Davydov O, Fluhr R. Alter-native splicing modulation by a LAMMER kinase impinges on developmental and transcriptome expression. Plant Cell, 2003, 15(4): 926- 938.[38] Macknight R, Duroux M, Laurie R, Dijkwel P, Simpson G, Dean C. Functional significance of the alternative tran-script processing of the Arabidopsis floral pro-moter FCA. Plant Cell, 2002, 14(4): 877-888.[39] Miyake CA, Asada KI. Inactivation mechanism of ascor-bate peroxidase at low concentrations of ascorbate: hy-drogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol, 1996, 37(4): 423-430.[40] Kitajima S, Tomizawa KI, Shigeoka S, Yokota A. An in-serted loop region of stromal ascorbate peroxidase is involved in its hydrogen peroxide-mediated inactivation. FEBS J, 2006, 273(12): 2704-2710.[41] Wada K, Tada T, Nakamura Y, Ishikawa T, Yabuta Y, Yoshimura K, Shigeoka S, Nishimura K. Crystal structure of chloroplastic ascorbate peroxidase from tobacco plants and structural insights into its instability. J Bio-chem, 2003, 134(2): 239-244.[42] Kitajima S, Shimaoka T, Kurioka M, Yokota A. Irreversible cross-linking of heme to the distal tryptophan of stromal ascorbate peroxidase in response to rapid inactivation by H2O2. FEBS J, 2007, 274(12): 3013-3020.[43] Kitajima S, Kurioka M, Yoshimoto T, Shindo M, Kanaori K, Tajima K, Oda K. A cysteine residue near the propionate side chain of heme is the radical site in ascorbate per-oxidase. FEBS J, 2008, 275(3): 470-480.[44] Kitajima S, Kitamura M, Koja N. Triple mutation of Cys26, Trp35 and Cys126 in stromal ascorbate peroxidase confers H2O2 tolerance comparable to that of the cytosolic isoform. Biochem Bioph Res Co, 2008, 372(4): 918-923.[45] Kitajima S, Nii H, Kitamura M. Recombinant stromal APX defective in the unique loop region showed improved tolerance to hydrogen peroxide. Biosci Biotech Bioch, 2010, 74(7): 1501- 1503.[46] Ishikawa T, Morimoto Y, Madhusudhan R, Sawa Y, Shi-bata H, Yabuta Y, Nishizawa A, Shigeoka S. Acclimation to diverse environmental stresses caused by a suppression of cytosolic ascorbate peroxidase in tobacco BY-2 cells. Plant Cell Physiol, 2005, 46(8): 1264-1271.[47] Rosa SB, Caverzan A, Teixeira FK, Lazzarotto F, Silveira JAG, Ferreira-Silva SL, Abreu-Neto J, Margis R, Margis-Pinheiro M. Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochemis-try, 2010, 71(5-6): 548-558.[48] Pnueli L, Liang HJ, Rozenberg M, Mittler R. Growth suppression, altered stomatal responses, and augmented in-duction of heat shock proteins in cytosolic ascorbate per-oxidase (Apx1)- deficient Arabidopsis plants. Plant J, 2003, 34(2): 187-203.[49] Ishikawa T, Shigeoka S. Recent advances in ascorbate biosynthesis and the physiological significance of ascor-bate peroxidase in photosynthesizing organisms. Biosci Biotech Bioch, 2008, 72(5): 1143-1154.[50] Khanna-Chopra R, Jajoo A, Semwal VK. Chloroplasts and mitochondria have multiple heat tolerant isozymes of SOD and APX in leaf and inflorescence in Chenopodium album. Biochem Bioph Res Co, 2011, 412(4): 522-525.[51] Hu LX, Li HY, Pang HC, Fu JM. Responses of antioxidant gene, protein and enzymes to salinity stress in two geno-types of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol, 2012, 169(2): 146-156.[52] Nounjan N, Nghia PT, Theerakulpisut P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate an-tioxidant enzymes and expression of related genes. J Plant Physiol, 2012, 169(6): 596-604.[53] Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsis thaliana plants overex-pressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J, 2004, 38(6): 940-953.[54] Pang CH, Li K, Wang BS. Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiol Plant, 2011, 143(4): 355-366.[55] Tarantino D, Vannini C, Bracale M, Campa M, Soave C, Murgia I. Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances paraquat-induced photooxidative stress and nitric oxide-induced cell death. Planta, 2005, 221(6): 757-765.[56] Giacomelli L, Masi A, Ripoll DR, Lee MJ, Van Wijk KJ. Arabidopsis thaliana deficient in two chloroplast ascorbate peroxidases shows accelerated light-induced necrosis when levels of cellular ascorbate are low. Plant Mol Biol, 2007, 65(5): 627-644.[57] Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K, Ishikawa T, Shigeoka S. Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiol, 2010, 51(2): 190-200. |