遗传 ›› 2016, Vol. 38 ›› Issue (6): 532-542.doi: 10.16288/j.yczz.15-478
孔德艳, 陈守俊, 周立国, 高欢, 罗利军, 刘灶长
收稿日期:
2015-11-26
修回日期:
2016-03-17
出版日期:
2016-06-20
发布日期:
2016-04-06
通讯作者:
刘灶长,博士,研究员,研究方向:水稻分子遗传。E-mail: lzc@sagc.org.cn
E-mail:csj08@sagc.org.cn
作者简介:
孔德艳,硕士,研究实习员,研究方向:水稻分子遗传。E-mail: kdy07@sagc.org.cn陈守俊,硕士,研究实习员,研究方向:水稻分子遗传。E-mail: csj08@sagc.org.cn孔德艳和陈守俊为并列第一作者。
基金资助:
Deyan Kong, Shoujun Chen, Liguo Zhou, Huan Gao, Lijun Luo, Zaochang Liu
Received:
2015-11-26
Revised:
2016-03-17
Online:
2016-06-20
Published:
2016-04-06
Supported by:
摘要: 水稻开花调控是一个极其复杂的生命过程,由自身遗传因素和外界环境共同决定。光周期途径是调控水稻开花的关键途径,在这个途径中成花素基因Hd3a和RTF1处于核心地位,其上游调控途径主要包括Hd1依赖途径、Ehd1依赖途径及不依赖于Hd1和Ehd1的途径。这3条途径在汇集了光信号的各种信息后,将信号在Hd3a和RTF1处整合,并通过成花素形式将信息传递给下游开花基因,调控水稻开花。本文从成花素、光信号感受基因和昼夜节律基因、成花素上游调控基因、互作蛋白和下游调控基因等几方面阐述水稻开花光周期调控相关基因的研究现状,为水稻开花调控的深入研究提供参考。
孔德艳, 陈守俊, 周立国, 高欢, 罗利军, 刘灶长. 水稻开花光周期调控相关基因研究进展[J]. 遗传, 2016, 38(6): 532-542.
Deyan Kong, Shoujun Chen, Liguo Zhou, Huan Gao, Lijun Luo, Zaochang Liu. Research progress of photoperiod regulated genes on flowering time in rice[J]. HEREDITAS(Beijing), 2016, 38(6): 532-542.
[1] Zeng Q, Zhao ZH, Zhao SQ. Signal pathways of flowering time regulation in plant. Hereditas ( Beijing ), 2006, 28(8): 1031-1036. 曾群, 赵仲华, 赵淑清. 植物开花时间调控的信号途径. 遗传, 2006, 28(8): 1031-1036. [2] Zhang YN, Zhou YP, Chen QH, Huang XL, Tian CE. Molecular basis of flowering time regulation in Arabidopsis . Chin Bull Bot , 2014, 49(4): 469-482. 张艺能, 周玉萍, 陈琼华, 黄小玲, 田长恩. 拟南芥开花时间调控的分子基础. 植物学报, 2014, 49(4): 469-482. [3] Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci , 2011, 68(12): 2013-2037. [4] Sun CH, Deng XJ, Fang J, Chu CC. An overview of flowering transition in higher plants. Hereditas ( Beijing ), 2007, 29(10): 1182-1190. 孙昌辉, 邓晓建, 方军, 储成才. 高等植物开花诱导研究进展. 遗传, 2007, 29(10): 1182-1190. [5] Song YL, Luan WJ. Regulatory pathways of rice flowering in different light and temperature conditions. Chin J Rice Sci , 2012, 6(4): 383-392. 宋远丽, 栾维江. 水稻开花的光温调控分子机理. 中国水稻科学, 2012, 6(4): 383-392. [6] Xu QH, Zhang DB, Liang WQ. Research on the molecular mechanism of florigen in rice. J Shanghai Jiaotong Univ (Agric Sci) , 2010, 28(3): 296-304. 徐千惠, 张大兵, 梁婉琪. 水稻成花素分子作用机制研究进展. 上海交通大学学报(农业科学版), 2010, 28(3): 296-304. [7] Xu Q, Okumoto Y, Wang XX. Research progress on regulatory molecular mechanisms of flowering time in rice. J Plant Genet Resour , 2014, 15(1): 129-136. 徐铨, 奥本裕, 王晓雪. 水稻开花期调控分子机理研究进展. 植物遗传资源学报, 2014, 15(1): 129-136. [8] Zeevaart JAD. Florigen coming of age after 70 years. Plant Cell , 2006, 18(8): 1783-1789. [9] Corbesier L, Vincent C, Jang S, Fornara F, Fan QZ, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT Protein Movement contributes to long-distance signaling in floral induction of Arabidopsis . Science , 2007, 316(5827): 1030-1033. [10] Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science , 2007, 316(5827): 1033-1036. [11] Yang YJ, Klejnot J, Yu XH, Liu XM, Lin CT. Florigen (II): It is a mobile protein. J Integer Plant Biol , 2007, 49(12): 1665-1669. [12] Tsuji H, Taoka K, Shimamoto K. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol , 2011, 14(1): 45-52. [13] Tsuji H, Taoka, Shimamoto K. Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr Opin Plant Biol , 2013, 16(2): 228-235. [14] Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development , 2008, 135(4): 767-774. [15] Chardon F, Damerval C. Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol , 2005, 61(5): 579-590. [16] Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1 , Hd-2 and Hd-3 , controlling heading date of rice, as single Mendelian factors. Theor Appl Genet , 1998, 97(1-2): 37-44. [17] Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a , a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol , 2002, 43(10): 1096-1105. [18] Komiya R, Yokoi S, Shimamoto K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development , 2009, 136(20): 3443-3450. [19] Brambilla V, Fornara F. Molecular control of flowering in response to day length in rice. J Integr Plant Biol , 2013, 55(5): 410-418. [20] Lee YS, An G. Complex regulatory networks of flowering time in rice. J Rice Res , 2015, 3(3): 141. [21] Lee YS, An G. Regulation of flowering time in rice. J Plant Biol , 2015, 58(6): 353-360. [22] Takano M, Inagaki N, Xie XZ, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell , 2005, 17(12): 3311-3325. [23] Osugi A, Itoh H, Ikeda-Kawakatsu K, Takano M, Izawa T. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol , 2011, 157(3): 1128-1137. [24] Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M. Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol , 2006, 47(7): 915-925. [25] Zhang YC, Gong SF, Li QH, Sang Y, Yang HQ. Functional and signaling mechanism analysis of rice cryptochrome. Plant J , 2006, 46(6): 971-983. [26] Lee YS, An G. OsGI controls flowering time by modulating rhythmic flowering time regulators preferentially under short day in rice. J Plant Biol , 2015, 58(2): 137-145. [27] Lin HX, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interactions of three QTLs, Hd1 , Hd2 and Hd3 , controlling heading date in rice using nearly isogenic lines. Theor Appl Genet , 2000, 101(7): 1021-1028. [28] Yang Y, Peng Q, Chen GX, Li XH, Wu CY. OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Mol Plant , 2013, 6(1): 202-215. [29] Zhao JM, Huang X, Ouyang XH, Chen WL, Du AP, Zhu L, Wang SG, Deng XW, Li SG. OsELF3-1 , an ortholog of Arabidopsis EARLY FLOWERING 3 , regulates rice circadian rhythm and photoperiodic flowering. PLoS One , 2012, 7(8): e43705. [30] Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M. Natural variation in Hd17 , a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol , 2012, 53(4): 709-716. [31] Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Yano M, Inoue H, Tanisaka T. Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant Cell Physiol , 2012, 53(4): 717-728. [32] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1 , a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS . Plant Cell , 2000, 12(12): 2473-2483. [33] Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol , 2008, 59(2): 573-594. [34] Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell , 1995, 80(6): 847-857. [35] Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Gen Dev , 2002, 16(15): 2006-2020. [36] Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature , 2003, 422(6933): 719- 722. [37] Yang Y, Fu DB, Zhu CM, He YZ, Zhang HJ, Liu T, Li XH, Wu CY. The RING-finger ubiquitin ligase HAF1 mediates heading date 1 degradation during photoperiodic flowering in rice. Plant Cell , 2015, 27(9): 2455-2468. [38] Vega-Sánchez ME, Zeng LR, Chen SB, Leung H, Wang GL. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell , 2008, 20(6): 1456-1469. [39] Cai YH, Vega-Sánchez ME, Park CH, Bellizzi M, Guo ZJ, Wang GL. RBS1, an RNA binding protein, interacts with SPIN1 and is involved in flowering time control in rice. PLoS One , 2014, 9(1): e87258 [40] Ogiso E, Takahashi Y, Sasaki T, Yano M, Izawa T. The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiol , 2010, 152(2): 808-820. [41] Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1 , a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1 . Gen Dev , 2004, 18(8): 926-936. [42] Itoh H, Nonoue Y, Yano M, Izawa T. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet , 2010, 42(7): 635-638. [43] Kim SL, Lee S, Kim HJ, Nam HG, An G. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1 , OsMADS14 , and Hd3a . Plant Physiol , 2007, 145(4): 1484-1494. [44] Sun CH, Fang J, Zhao TL, Xu B, Zhang FT, Liu LC, Tang JY, Zhang GF, Deng XJ, Chen F, Qian Q, Cao XF, Chu CC. The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice. Plant Cell , 2012, 24(8): 3235-3247. [45] Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M. Ehd2 , a rice ortholog of the maize INDETERMINATE1 Gene, promotes flowering by up-regulating Ehd1 . Plant Physiol , 2008, 148(3): 1425-1435. [46] Wu CY, You CJ, Li CS, Long T, Chen GX, Byrne ME, Zhang QF. RID1 , encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci USA , 2008, 105(35): 12915-12920. [47] Park SJ, Kim SL, Lee S, Je B, Piao HL, Park SH, Kim CM, Ryu CH, Park SH, Xuan YH, Colasanti J, An G, Han C. Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J , 2008, 56(6): 1018-1029. [48] Hu SK, Dong GJ, Xu J, Su Y, Shi ZY, Ye WJ, Li YY, Li GM, Zhang B, Hu J, Qian Q, Zeng DL, Guo LB. A point mutation in the zinc finger motif of RID1/EHD2/OsID1 protein leads to outstanding yield-related traits in japonica rice variety Wuyunjing 7. Rice , 2013, 6(1): 24. [49] Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, Minobe Y, Yano M. Ehd3 , encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J , 2011, 66(4): 603-612. [50] Gao H, Zheng XM, Fei GL, Chen J, Jin MN, Ren YL, Wu WX, Zhou KN, Sheng PK, Zhou F, Jiang L, Wang J, Zhang X, Guo XP, Wang JL, Cheng ZhJ, Wu CY, Wang HY, Wan JM. Ehd4 encodes a novel and oryza-genus- specific regulator of photoperiodic flowering in rice. PLoS Genet , 2013, 9(2): e1003281. [51] Andrés F, Galbraith DW, Talón M, Domingo C. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol , 2009, 151(2): 681-690. [52] Lee YS, Jeong DH, Lee DY, Yi J, Ryu CH, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Cho LH, Choi H, An G. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB . Plant J , 2010, 63(1): 18-30. [53] Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ , 2009, 32(10): 1412-1427. [54] Bian XF, Liu X, Zhao ZG, Jiang L, Gao H, Zhang YH, Zheng M, Chen LM, Liu SJ, Zhai HQ, Wan JM. Heading date gene, dth3 controlled late flowering in O . Glaberrima Steud. by down-regulating Ehd1 . Plant Cell Rep , 2011, 30(12): 2243-2254. [55] Lee S, Kim J, Han JJ, Han MJ, An G. Functional analyses of the flowering time gene OsMADS50 , the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J , 2004, 38(5): 754-764. [56] Yang J, Lee S, Hang RL, Kim SR, Lee YS, Cao XF, Amasino R, An G. OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J , 2013, 73(4): 566-578. [57] Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M. Hd16 , a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J , 2013, 76(1): 36-46. [58] Peng LT, Shi ZY, Li L, Shen GZ, Zhang JL. Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa . J Plant Physiol , 2008, 165(8): 876-885. [59] Peng LT, Shi ZY, Li L, Shen GZ, Zhang JL. Ectopic expression of OsLFL1 in rice represses Ehd1 by binding on its promoter. Biochem Bioph Res Commun , 2007, 360(1): 251-256. [60] Wei XJ, Xu JF, Guo HN, Jiang L, Chen SH, Yu CY, Zhou ZL, Hu PS, Zhai HQ, Wan JM. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol , 2010, 153(4): 1747-1758. [61] Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF. A major QTL, Ghd8 , plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant , 2011, 4(2): 319-330. [62] Dai XD, Ding YN, Tan LB, Fu YC, Liu FX, Zhu ZF, Sun XY, Sun XW, Gu P, Cai HW, Sun CQ. LHD1 , an allele of DTH8/Ghd8 , controls late heading date in common wild rice ( Oryza rufipogon ). J Integr Plant Biol , 2012, 54(10): 790-799. [63] Gao H, Jin MN, Zheng XM, Chen J, Yuan DY, Xin YY, Wang MQ, Huang DY, Zhang Z, Zhou KN, Sheng PK, Ma J, Ma WW, Deng HF, Jiang L, Liu SJ, Wang HY, Wu CY, Yuan LP, Wan JM. Days to heading 7 , a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA , 2014, 111(46): 16337-16342. [64] Kim SK, Yun CH, Lee JH, Jang YH, Park HY, Kim JK. OsCO3 , a CONSTANS -LIKE gene, controls flowering by negatively regulating the expression of FT -like genes under SD conditions in rice. Planta , 2008, 228(2): 355-365. [65] Li DJ, Yang CH, Li XB, Ji GB, Zhu LH. Sense and antisense OsDof12 transcripts in rice. BMC Mol Biol , 2008, 9: 80. [66] Li DJ, Yang CH, Li XB, Gan Q, Zhao XF, Zhu LH. Functional characterization of rice OsDof12 . Planta , 2009, 229(6): 1159-1169. [67] Sun CH, Chen D, Fang J, Wang PR, Deng XJ, Chu CC. Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways. Protein Cell , 2014, 5(12): 889-898. [68] Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature , 2011, 476(7360): 332-335. [69] Purwestri YA, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol , 2009, 50(3): 429-438. [70] Kobayashi K, Yasuno N, Sato Y, Yoda M, Yamazaki R, Kimizu M, Yoshida H, Nagamura Y, Kyozuka J. Inflorescence meristem identity in rice Is specified by overlapping functions of three AP1/FUL -Like MADS box genes and PAP2 , a SEPALLATA MADS box gene. Plant Cell , 2012, 24(5): 1848-1859. [71] Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. PANICLE PHYTOMER2 ( PAP2 ), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol , 2010, 51(1): 47-57. (责任编委: 储成才) |
[1] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[2] | 刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[3] | 杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[4] | 辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
[5] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
[6] | 李佳,刘运华,张余,陈晨,余霞,余舜武. 干旱对水稻生物钟基因和干旱胁迫响应基因每日节律性变化的影响[J]. 遗传, 2017, 39(9): 837-846. |
[7] | 韩晓斌, 徐冉, 段朋根, 于海跃, 罗越华, 李云海. 水稻斑点叶突变体spl101和spl102的筛选及候选基因鉴定[J]. 遗传, 2017, 39(4): 346-353. |
[8] | 唐丽, 李曜魁, 张丹, 毛毕刚, 吕启明, 胡远艺, 韶也, 彭彦, 赵炳然, 夏石头. 基于基因组编辑技术的水稻靶向突变特征及遗传分析[J]. 遗传, 2016, 38(8): 746-755. |
[9] | 武迪, 黄林周, 高谨, 王永红. 植物重力反应的分子调控机制[J]. 遗传, 2016, 38(7): 589-602. |
[10] | 李莉云,史佳楠,杨烁,孙财强,刘国振. 基于转录特征的水稻WRKY转录因子功能注释[J]. 遗传, 2016, 38(2): 126-136. |
[11] | 张红宇, 崔晓云, 侯飞雪, 王一伊, 吴挺开, 刘禹彤, 杨定乾, 张洪凯, 傅瑶, 张向阳, 李文丽, 吴先军. 水稻基因组加倍对籽粒大小调控基因表达的影响[J]. 遗传, 2016, 38(12): 1102-1111. |
[12] | 宋海冰, 汪斌, 陈壬杰, 郑小雅, 于世波, 兰涛. 水稻“光身”突变体glr3的遗传分析及基因定位[J]. 遗传, 2016, 38(11): 1012-1019. |
[13] | 胡运高, 郭连安, 杨国涛, 钦鹏, 范存留, 彭友林, 严维, 何航, 李仕贵. 直立密穗基因DEP2-1388的遗传分析及在杂交稻中的育种利用[J]. 遗传, 2016, 38(1): 72-81. |
[14] | 储黄伟, 牛付安, 程灿, 周继华, 王新其, 罗小金, 袁勤, 曹黎明. 杂交粳稻花优14及其亲本孕穗期剑叶的基因表达谱芯片分析[J]. 遗传, 2015, 37(9): 932-938. |
[15] | 李雪倩, 徐冉, 段朋根, 伍应保, 罗越华, 李云海. 水稻窄叶突变体zy17的遗传分析和候选基因鉴定[J]. 遗传, 2015, 37(6): 582-589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: