[1] | Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev, 1995, 9(5): 534-546. | [2] | Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development, 1995, 121(4): 1053-1063. | [3] | Kango-Singh M, Nolo R, Tao CY, Verstreken P, Hiesinger PR, Bellen HJ, Halder G. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development, 2002, 129(24): 5719-5730. | [4] | Tapon N, Harvey KF, Bell DW, Wahrer DC, Schiripo TA, Haber D, Hariharan IK. Salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell, 2002, 110(4): 467-478. | [5] | Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell, 2003, 114(4): 457-467. | [6] | Jia JH, Zhang WS, Wang B, Trinko R, Jiang J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev, 2003, 17(20): 2514-2519. | [7] | Pantalacci S, Tapon N, Léopold P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol, 2003, 5(10): 921-927. | [8] | Udan RS, Kango-Singh M, Nolo R, Tao CY, Halder G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol, 2003, 5(10): 914-920. | [9] | Wu SA, Huang JB, Dong JX, Pan DJ. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell, 2003, 114(4): 445-456. | [10] | Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell, 2005, 120(5): 675-685. | [11] | Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 2015, 163(4): 811-828. | [12] | Huang JB, Wu SA, Barrera J, Matthews K, Pan DJ. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell, 2005, 122(3): 421-434. | [13] | Zhao B, Li L, Lei QY, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev, 2010, 24(9): 862-874. | [14] | Zhang NL, Bai HB, David KK, Dong JX, Zheng YG, Cai J, Giovannini M, Liu PT, Anders RA, Pan DJ. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell, 2010, 19(1): 27-38. | [15] | Zhou D, Zhang Y, Wu H, Barry E, Yin Y, Lawrence E, Dawson D, Willis JE, Markowitz SD, Camargo FD, Avruch J. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein(Yap) overabundance. Proc Natl Acad Sci USA, 2011, 108(49): E1312-E1320. | [16] | Zhao B, Wei XM, Li WQ, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu JD, Li L, Zheng P, Ye KQ, Chinnaiyan A, Halder G, Lai ZC, Guan KL. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev, 2007, 21(21): 2747-2761. | [17] | Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep, 2014, 15(6): 642-656. | [18] | Zhao B, Ye X, Yu JD, Li L, Li WQ, Li SM, Yu JJ, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev, 2008, 22(14): 1962-1971. | [19] | Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell, 2011, 144(5): 782-795. | [20] | von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA, 2012, 109(7): 2394-2399. | [21] | Chen LM, Chan SW, Zhang XQ, Walsh M, Lim CJ, Hong WJ, Song HW. Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev, 2010, 24(3): 290-300. | [22] | Tian W, Yu JZ, Tomchick DR, Pan DJ, Luo XL. Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc Natl Acad Sci USA, 2010, 107(16): 7293-7298. | [23] | Taniguchi K, Wu LW, Grivennikov SI, de Jong PR, Lian I, Yu FX, Wang KP, Ho SB, Boland BS, Chang JT, Sandborn WJ, Hardiman G, Raz E, Maehara Y, Yoshimura A, Zucman-Rossi J, Guan KL, Karin M. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature, 2015, 519(7541): 57-62. | [24] | Park HW, Guan KL. Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol Sci, 2013, 34(10): 581-589. | [25] | Pobbati AV, Chan SW, Lee I, Song HW, Hong WJ. Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes. Structure, 2012, 20(7): 1135-1140. | [26] | Jiao S, Wang HZ, Shi ZB, Dong AM, Zhang WJ, Song XM, He F, Wang YC, Zhang ZZ, Wang WJ, Wang X, Guo T, Li PX, Zhao Y, Ji HB, Zhang L, Zhou ZC. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell, 2014, 25(2): 166-180. | [27] | Zhang WJ, Gao YJ, Li PX, Shi ZB, Guo T, Li F, Han XK, Feng Y, Zheng C, Wang ZY, Li FM, Chen HQ, Zhou ZC, Zhang L, Ji HB. VGLL4 functions as a new tumor supperssor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res, 2014, 24(3): 331-343. | [28] | Oudhoff MJ, Freeman SA, Couzens AL, Antignano F, Kuznetsova E, Min PH, Northrop JP, Lehnertz B, Barsyte-Lovejoy D, Vedadi M, Arrowsmith CH, Nishina H, Gold MR, Rossi FMV, Gingras AC, Zaph C. Control of the hippo pathway by Set7-dependent methylation of Yap. Dev Cell, 2013, 26(2): 188-194. | [29] | Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development, 2014, 141(8): 1614-1626. | [30] | Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev, 2014, 94(4): 1287-1312. | [31] | Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer, 2015, 15(2): 73-79. | [32] | Zanconato F, Battilana G, Cordenonsi M, Piccolo S. YAP/TAZ as therapeutic targets in cancer. Curr Opin Pharmacol, 2016, 29: 26-33. | [33] | Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD, Vescovi AL. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci Nurs, 1996, 16(3): 1091-1100. | [34] | Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci, 1997, 8(6): 389-404. | [35] | Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstr?m H, Lendahl U, Frisén J. Generalized potential of adult neural stem cells. Science, 2000, 288(5471): 1660-1663. | [36] | Reddy BVVG, Rauskolb C, Irvine KD. Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development, 2010, 137(14): 2397-2408. | [37] | Yao MH, Wang YD, Zhang P, Chen H, Xu ZH, Jiao JW, Yuan ZQ. BMP2-SMAD signaling represses the proliferation of embryonic neural stem cells through YAP. J Neurosci, 2014, 34(36): 12039-12048. | [38] | Han D, Byun SH, Park S, Kim J, Kim I, Ha S, Kwon M, Yoon K. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner. Biochem Biophys Res Commun, 2015, 458(1): 110-116. | [39] | Huang ZH, Hu JX, Pan JX, Wang Y, Hu GQ, Zhou JL, Mei L, Xiong WC. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development, 2016, 143(13): 2398-2409. | [40] | Chen Q, Zhang NL, Gray RS, Li HL, Ewald AJ, Zahnow CA, Pan DJ. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev, 2014, 28(5): 432-437. | [41] | Zhang WY, Nandakumar N, Shi YH, Manzano M, Smith A, Graham G, Gupta S, Vietsch EE, Laughlin SZ, Wadhwa M, Chetram M, Joshi M, Wang F, Kallakury B, Toretsky J, Wellstein A, Yi CL. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal, 2014, 7(324): ra42. | [42] | Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, Fassina A, Cordenonsi M, Piccolo S. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell, 2014, 158(1): 157-170. | [43] | Zhao R, Fallon TR, Saladi SV, Pardo-Saganta A, Villoria J, Mou HM, Vinarsky V, Gonzalez-Celeiro M, Nunna N, Hariri LP, Camargo F, Ellisen LW, Rajagopal J. Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells. Dev Cell, 2014, 30(2): 151-165. | [44] | Cabochette P, Vega-Lopez G, Bitard J, Parain K, Chemouny R, Masson C, Borday C, Hedderich M, Henningfeld KA, Locker M, Bronchain O, Perron M. YAP controls retinal stem cell DNA replication timing and genomic stability. eLife, 2015, 4: e08488. | [45] | Thompson R, Chan C. Signal transduction of the physical environment in the neural differentiation of stem cells. Technology, 2016, 4(1): 1-8. | [46] | Pathak MM, Nourse JL, Tran T, Hwe J, Arulmoli J, Le DTT, Bernardis E, Flanagan LA, Tombola F. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc Natl Acad Sci USA, 2014, 111(45): 16148-16153. | [47] | Musah S, Wrighton PJ, Zaltsman Y, Zhong X, Zorn S, Parlato MB, Hsiao C, Palecek SP, Chang Q, Murphy WL, Kiessling LL. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc Natl Acad Sci USA, 2014, 111(38): 13805-13810. | [48] | Rammensee S, Kang MS, Georgiou K, Kumar S, Schaffer DV. Dynamics of mechanosensitive neural stem cell differentiation. Stem cells, 2017, 35(2): 497-506. | [49] | Sun YB, Yong KMA, Villa-Diaz LG, Zhang XL, Chen WQ, Philson R, Weng SN, Xu HX, Krebsbach PH, Fu JP. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat Mater, 2014, 13(6): 599-604. | [50] | Cao XW, Pfaff SL, Gage FH. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev, 2008, 22(23): 3320-3334. | [51] | Gee ST, Milgram SL, Kramer KL, Conlon FL, Moody SA. Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. PLoS One, 2011, 6(6): e20309. | [52] | Manderfield LJ, Engleka KA, Aghajanian H, Gupta M, Yang S, Li L, Baggs JE, Hogenesch JB, Olson EN, Epstein JA. Pax3 and hippo signaling coordinate melanocyte gene expression in neural crest. Cell Rep, 2014, 9(5): 1885-1895. | [53] | Fernandez-L A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD, Kenney AM. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev, 2009, 23(23): 2729-2741. | [54] | Kagey JD, Brown JA, Moberg KH. Regulation of Yorkie activity in Drosophila imaginal discs by the Hedgehog receptor gene patched. Mech Dev, 2012, 129(9-12): 339-349. | [55] | Van Hateren NJ, Das RM, Hautbergue GM, Borycki AG, Placzek M, Wilson SA. FatJ acts via the Hippo mediator Yap1 to restrict the size of neural progenitor cell pools. Development, 2011, 138(10): 1893-1902. | [56] | Mao YP, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development, 2011, 138(5): 947-957. | [57] | Kuta A, Mao YP, Martin T, de Sousa CF, Whiting D, Zakaria S, Crespo-Enriquez I, Evans P, Balczerski B, Mankoo B, Irvine KD, Francis-West PH. Fat4-Dchs1 signalling controls cell proliferation in developing vertebrae. Development, 2016, 143(13): 2367-2375. | [58] | Lavado A, He Y, Paré J, Neale G, Olson EN, Giovannini M, Cao XW. Tumor suppressor Nf2 limits expansion of the neural progenitor pool by inhibiting Yap/Taz transcriptional coactivators. Development, 2013, 140(16): 3323-3334. | [59] | Lavado A, Ware M, Paré J, Cao XW. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap. Development, 2014, 141(21): 4182-4193. | [60] | Serinagaoglu Y, Paré J, Giovannini M, Cao XW. Nf2-Yap signaling controls the expansion of DRG progenitors and glia during DRG development. Dev Biol, 2015, 398(1): 97-109. | [61] | Kim M, Kim M, Lee S, Kuninaka S, Saya H, Lee H, Lee S, Lim DS. cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J, 2013, 32(11): 1543-1555. | [62] | Kim JY, Park R, Lee JHJ, Shin J, Nickas J, Kim S, Cho SH. Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Dev Bio, 2016, 419(2): 336-347. | [63] | Ota Y, Zanetti AT, Hallock RM. The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast, 2013, 185463. | [64] | Sadigh-Eteghad S, Majdi A, Mahmoudi J, Golzari SEJ, Talebi M. Astrocytic and microglial nicotinic acetylcholine receptors: an overlooked issue in Alzheimer's disease. J Neural Transm, 2016, 123(12): 1359-1367. | [65] | Shimizu T, Osanai Y, Tanaka KF, Abe M, Natsume R, Sakimura K, Ikenaka K. YAP functions as a mechanotransducer in oligodendrocyte morphogenesis and maturation. Glia, 2017, 65(2): 360-374. | [66] | Grove M, Kim H, Santerre M, Krupka AJ, Han SB, Zhai JB, Cho JY, Park R, Harris M, Kim S, Sawaya BE, Kang SH, Barbe MF, Cho SH, Lemay MA, Son YJ. YAP/TAZ initiate and maintain Schwann cell myelination. eLife, 2017, 6, doi: 10.7554/eLife.20982. | [67] | Huang ZH, Wang Y, Hu GQ, Zhou JL, Mei L, Xiong WC. YAP is a critical inducer of SOCS3, preventing reactive astrogliosis. Cereb Cortex, 2016, 26(5): 2299-2310. | [68] | Huang ZH, Sun D, Hu JX, Tang FL, Lee DH, Wang Y, Hu GQ, Zhu XJ, Zhou JL, Mei L, XiongWC. Neogenin promotes BMP2 activation of YAP and Smad1 and enhances astrocytic differentiation in developing mouse neocortex. J Neurosci, 2016, 36(21): 5833-5849. | [69] | Lopez-Anido C, Poitelon Y, Gopinath C, Moran JJ, Ma KH, Law WD, Antonellis A, Feltri ML, Svaren J. Tead1 regulates the expression of peripheral myelin protein 22 during Schwann cell development. Hum Mol Genet, 2016, 25(14): 3055-3069. | [70] | Huang Z, Xiong WC. Neogenin-YAP signaling in neocortical astrocytic differentiation. Neurogenesis, 2016, 3(1): e1248735. | [71] | Lee DH, Zhou LJ, Zhou Z, Xie JX, Jung JU, Liu Y, Xi CX, Mei L, Xiong WC. Neogenin inhibits HJV secretion and regulates BMP-induced hepcidin expression and iron homeostasis. Blood, 2010, 115(15): 3136-3145. | [72] | Zhou Z, Xie JX, Lee D, Liu Y, Jung J, Zhou LJ, Xiong S, Mei L, Xiong WC. Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation. Dev Cell, 2010, 19(1): 90-102. | [73] | Poitelon Y, Lopez-Anido C, Catignas K, Berti C, Palmisano M, Williamson C, Ameroso D, Abiko K, Hwang Y, Gregorieff A, Wrana JL, Asmani M, Zhao RG, Sim FJ, Wrabetz L, Svaren J, Feltri ML. YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci, 2016, 19(7): 879-887. | [74] | Moleirinho S, Patrick C, Tilston-Lünel AM, Higginson JR, Angus L, Antkowiak M, Barnett SC, Prystowsky MB, Reynolds PA, Gunn-Moore FJ. Willin, An upstream component of the hippo signaling pathway, orchestrates mammalian peripheral nerve fibroblasts. PLoS One, 2013, 8(4): e60028. | [75] | Orr BA, Bai HB, Odia Y, Jain D, Anders RA, Eberhart CG. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J Neuropathol Exp Neurol, 2011, 70(7): 568-577. | [76] | Zhang H, Geng DC, Gao J, Qi YH, Shi Y, Wang Y, Jiang Y, Zhang Y, Fu JL, Dong Y, Gao SF, Yu RT, Zhou XP. Expression and significance of Hippo/YAP signaling in glioma progression. Tumor Biol, 2016, 37(12): 15665-15676. | [77] | Radu M, Chernoff J. The DeMSTification of mammalian Ste20 kinases. Curr Biol, 2009, 19(10): R421-R425. | [78] | Lehtinen MK, Yuan ZQ, Boag PR, Yang Y, Villen J, Becker E B, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell, 2006, 125(5): 987-1001. | [79] | Xiao L, Chen DM, Hu P, Wu JB, Liu WZ, Zhao YH, Cao M, Fang Y, Bi WZ, Zheng Z, Ren J, Ji GJ, Wang Y, Yuan ZQ. The c-Abl-MST1 signaling pathway mediates oxidative stress-induced neuronal cell death. J Neurosci Nurs, 2011, 31(26): 9611-9619. | [80] | Zhao SQ, Yin J, Zhou LJ, Yan F, He Q, Huang L, Peng SY, Jia JY, Cheng JB, Chen H, Tao WT, Ji XM, Xu Y, Yuan ZQ. Hippo/MST1 signaling mediates microglial activation following acute cerebral ischemia-reperfusion injury. Brain Behav Immun, 2016, 55: 236-248. | [81] | Mao Y, Chen XG, Xu M, Fujita K, Motoki K, Sasabe T, Homma H, Murata M, Tagawa K, Tamura T, Kaye J, Finkbeiner S, Blandino G, Sudol M, Okazawa H. Targeting TEAD/YAP-transcription-dependent necrosis, TRIAD, ameliorates Huntington's disease pathology. Hum Mol Genet, 2016, 25(21): 4749-4770. | [82] | Park R, Moon UY, Park JY, Hughes LJ, Johnson RL, Cho SH, Kim S. Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun, 2016, 7: 10329. | [83] | Li N, Lim G, Chen L, McCabe MF, Kim H, Zhang SZ, Mao JR. Spinal expression of Hippo signaling components YAP and TAZ following peripheral nerve injury in rats. Brain Res, 2013, 1535: 137-147. | [84] | Yuan H, Liu HL, Liu ZS, Zhu DK, Amos CI, Fang SY, Lee J E, Wei QY. Genetic variants in Hippo pathway genes YAP1, TEAD1 and TEAD4 are associated with melanoma-specific survival. Int J Cancer, 2015, 137(3): 638-645. |
|