[1] | George B, Seals S, Aban I . Survival analysis and regression models. J Nucl Cardiol, 2014,21:686-694. | [2] | Rasmussen L, Pratt N, Hansen MR, Hallas J, Pottegard A . Using the "proportion of patients covered" and the Kaplan- Meier survival analysis to describe treatment persistence. Pharmacoepidemiol Drug Saf, 2018,27:867-871. | [3] | Hsu CH, Yu M . Cox regression analysis with missing covariates via nonparametric multiple imputation. Stat Methods Med Res, 2018,962280218772592. | [4] | Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W , Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015,43:e47. | [5] | Heyer LJ, Kruglyak S, Yooseph S . Exploring expression data: identification and analysis of coexpressed genes. Genome Res, 1999,9:1106-1115. | [6] | Bunger R, Mallet RT . Metabolomics and receiver operating characteristic analysis: a promising approach for sepsis diagnosis. Crit Care Med, 2016,44:1784-1785. | [7] | Grau J, Grosse I, Keilwagen J . PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics, 2015,31:2595-2597. | [8] | Cichonska A, Rousu J, Marttinen P, Kangas AJ, Soininen P, Lehtimaki T, Raitakari OT, Jarvelin MR, Salomaa V, Ala-Korpela M, Ripatti S , Pirinen M. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. Bioinformatics, 2016,32:1981-1989. | [9] | Dimou NL, Tsirigos KD, Elofsson A, Bagos PG . GWAR: robust analysis and meta-analysis of genome-wide association studies. Bioinformatics, 2017,33:1521-1527. | [10] | Chin L, Andersen JN, Futreal PA . Cancer genomics: from discovery science to personalized medicine. Nature Medicine, 2011,17:297-303. | [11] | Tomczak K, Czerwinska P, Wiznerowicz M . The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn), 2015,19:A68-77. | [12] | Hanahan D, Weinberg RA . The hallmarks of cancer. Cell, 2000,100:57-70. | [13] | Sirintrapun SJ, Zehir A, Syed A, Gao J, Schultz N, Cheng DT . Translational bioinformatics and clinical research (biomedical) informatics. Clin Lab Med, 2016,36:153-181. | [14] | Li QK, Pavlovich CP, Zhang H, Kinsinger CR, Chan DW . Challenges and opportunities in the proteomic characterization of clear cell renal cell carcinoma (ccRCC): a critical step towards the personalized care of renal cancers. Semin Cancer Biol, 2018, DOI: 10.1016/j.semcancer.2018.06.004. | [15] | Smith CC, Beckermann KE ,Bortone DS, de Cubas AA, Bixby LM, Lee SJ, Panda A, Ganesan S, Bhanot G, Wallen EM, Milowsky MI, Kim WY, Rathmell WK, Swanstrom R, Parker JS, Serody JS, Selitsky SR, Vincent BG.Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J Clin Invest, 2018,128(11):4804-4820. | [16] | Byron SA ,Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW.Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet, 2016,17:257-271. | [17] | Chen H, Li C, Peng X, Zhou Z, Weinstein JN ,Cancer Genome Atlas Research N, Liang H.A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell, 2018,173:386-399 e312. | [18] | Gebert LFR , MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol, 2018,20(1):21-37. | [19] | Rupaimoole R, Slack FJ . MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov, 2017,16:203-222. | [20] | Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell, 2009,136:215-233. | [21] | Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, Araujo L, Carbone DP, Shilo K, Giri DK, Kelnar K, Martin D, Komaki R, Gomez DR, Krishnan S, Calin GA, Bader AG, Welsh JW . PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst, 2016,108. | [22] | Boyd SD . Diagnostic applications of high-throughput DNA sequencing. Annu Rev Pathol, 2013,8:381-410. | [23] | Lasken RS , McLean JS. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet, 2014,15:577-584. | [24] | McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A, Shapero MH, de Bakker PI, Maller JB, Kirby A, Elliott AL, Parkin M, Hubbell E, Webster T, Mei R, Veitch J, Collins PJ, Handsaker R, Lincoln S, Nizzari M, Blume J, Jones KW, Rava R, Daly MJ, Gabriel SB, Altshuler D . Integrated detection and population- genetic analysis of SNPs and copy number variation. Nat Genet, 2008,40:1166-1174. | [25] | Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science, 2017, 357(6348): pii: eaal2380. | [26] | Okugawa Y, Grady WM, Goel A . Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology, 2015,149:1204-1225 e1212. | [27] | Dor Y, Cedar H . Principles of DNA methylation and their implications for biology and medicine. Lancet, 2018,392(10149):777-786. | [28] | Lu Y, Ling S, Hegde AM, Byers LA, Coombes K, Mills GB, Akbani R . Using reverse-phase protein arrays as pharmacodynamic assays for functional proteomics, biomarker discovery, and drug development in cancer. Semin Oncol, 2016,43:476-483. | [29] | Jiang T, Shi W, Wali VB, Pongor LS, Li C, Lau R, Gyorffy B, Lifton RP, Symmans WF, Pusztai L, Hatzis C . Predictors of chemosensitivity in triple negative breast cancer: an integrated genomic analysis. PLoS Med, 2016,13:e1002193. | [30] | Salem O, Erdem N, Jung J, Munstermann E, Worner A, Wilhelm H, Wiemann S, Korner C . The highly expressed 5'isomiR of hsa-miR-140-3p contributes to the tumor- suppressive effects of miR-140 by reducing breast cancer proliferation and migration. BMC Genomics, 2016,17:566. | [31] | Gibori H, Eliyahu S, Krivitsky A, Ben-Shushan D, Epshtein Y, Tiram G, Blau R, Ofek P, Lee JS, Ruppin E, Landsman L, Barshack I, Golan T, Merquiol E, Blum G, Satchi-Fainaro R . Amphiphilic nanocarrier-induced modulation of PLK1 and miR-34a leads to improved therapeutic response in pancreatic cancer. Nat Commun, 2018,9:16. | [32] | Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CE ,Cancer Genome Atlas Research N, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich L.The immune landscape of cancer. Immunity, 2018,48:812-830 e814. | [33] | Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W, Liu Y, Fan H, Shen H, Ravikumar V, Rao A, Schultz A, Li X, Sumazin P, Williams C, Mestdagh P, Gunaratne PH, Yau C, Bowlby R, Robertson AG, Tiezzi DG, Wang C, Cherniack AD, Godwin AK, Kuderer NM, Rader JS, Zuna RE, Sood AK, Lazar AJ, Ojesina AI, Adebamowo C, Adebamowo SN, Baggerly KA, Chen TW, Chiu HS, Lefever S, Liu L ,MacKenzie K, Orsulic S, Roszik J, Shelley CS, Song Q, Vellano CP, Wentzensen N, Cancer Genome Atlas Research N, Weinstein JN, Mills GB, Levine DA, Akbani R.A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell, 2018,33:690-705 e699. | [34] | Yu KH, Fitzpatrick MR, Pappas L, Chan W, Kung J, Snyder M . Omics analysis system for precision oncology (OASISPRO): a web-based omics analysis tool for clinical phenotype prediction. Bioinformatics, 2018,34(2):319-320. | [35] | Fisch KM, Meissner T, Gioia L, Ducom JC, Carland TM, Loguercio S, Su AI . Omics Pipe: a community-based framework for reproducible multi-omics data analysis. Bioinformatics, 2015,31:1724-1728. | [36] | Zhang YS, Xia L, Sang J, Li M, Liu L, Li MG, Niu GY, Cao JB, Teng XF, Zhou Q, Zhang Z . The BIG Data Center’s database resources. Hereditas(Beijing), 2018,40(11):1039-1043. | [36] | 张源笙, 夏琳, 桑健, 李漫, 刘琳, 李萌伟, 牛广艺, 曹佳宝, 滕徐菲, 周晴, 章张 . 生命与健康大数据中心资源. 遗传, 2018,40(11):1039-1043. |
|