[1] |
Edwards JH, Harnden DG, Cameron AH, Crosse VM, Wolff OH . A new trisomic syndrome. Lancet, 1960,1(7128):787-790.
doi: 10.1016/s0140-6736(60)90675-9
pmid: 13819419
|
[2] |
Smith DW, Patau K, Therman E, Inhorn SL . A new autosomal trisomy syndrome: multiple congenital anomalies caused by an extra chromosome. J Pediatr, 1960,57:338-345.
doi: 10.1016/s0022-3476(60)80241-7
pmid: 13831938
|
[3] |
Cereda A, Carey JC . The trisomy 18 syndrome. Orphanet J Rare Dis, 2012,7:81.
doi: 10.1186/1750-1172-7-81
pmid: 23088440
|
[4] |
Cavadino A, Morris JK . Revised estimates of the risk of fetal loss following a prenatal diagnosis of trisomy 13 or trisomy 18. Am J Med Genet A, 2017,173(4):953-958.
doi: 10.1002/ajmg.a.38123
pmid: 28328132
|
[5] |
Yamanaka M, Setoyama T, Igarashi Y, Kurosawa K, Itani Y, Hashimoto S, Saitoh K, Takei M, Hirabuki T . Pregnancy outcome of fetuses with trisomy 18 identified by prenatal sonography and chromosomal analysis in a perinatal center. Am J Med Genet A, 2006,140(11):1177-1182.
doi: 10.1002/ajmg.a.31241
pmid: 16652360
|
[6] |
Rasmussen SA, Wong LYC, Yang QH, May KM, Friedman JM . Population-based analyses of mortality in trisomy 13 and trisomy 18. Pediatrics, 2003,111(4 Pt 1):777-784.
doi: 10.1542/peds.111.4.777
pmid: 12671111
|
[7] |
Nelson KE, Rosella LC, Mahant S, Guttmann A . Survival and surgical interventions for children with trisomy 13 and 18. Jama, 2016,316(4):420-428.
doi: 10.1001/jama.2016.9819
pmid: 27458947
|
[8] |
FitzPatrick DR, Ramsay J, McGill NI, Shade M, Carothers AD, Hastie ND . Transcriptome analysis of human autosomal trisomy. Hum Mol Genet, 2002,11(26):3249-3256.
doi: 10.1093/hmg/11.26.3249
pmid: 12471051
|
[9] |
Buenrostro JD, Wu BJ, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ . Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 2015,523(7561):486-490.
doi: 10.1038/nature14590
pmid: 26083756
|
[10] |
Schueler MG, Sullivan BA . Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet, 2006,7:301-313.
doi: 10.1146/annurev.genom.7.080505.115613
pmid: 16756479
|
[11] |
Hsiung CCS, Morrissey CS, Udugama M, Frank CL, Keller CA, Baek S, Giardine B, Crawford GE, Sung MH, Hardison RC, Blobel GA . Genome accessibility is widely preserved and locally modulated during mitosis. Genome Res, 2015,25(2):213-225.
doi: 10.1101/gr.180646.114
pmid: 25373146
|
[12] |
González J, Muñoz A, Martos G . Asymmetric latent semantic indexing for gene expression experiments visualization. J Bioinform Comput Biol, 2016,14(4):1650023.
doi: 10.1142/S0219720016500232
pmid: 27427382
|
[13] |
Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B . JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res, 2004,32(Database issue):D91-94.
doi: 10.1093/nar/gkh012
pmid: 14681366
|
[14] |
Schelker M, Feau S, Du JY, Ranu N, Klipp E, MacBeath G, Schoeberl B, Raue A. Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat Commun, 2017,8(1):2032.
doi: 10.1038/s41467-017-02289-3
pmid: 29230012
|
[15] |
Sinha D, Kumar A, Kumar H, Bandyopadhyay S, Sengupta D. dropClust: efficient clustering of ultra-large scRNA-seq data. Nucleic Acids Res, 2018,46(6):e36.
doi: 10.1093/nar/gky007
pmid: 29361178
|
[16] |
Makrydimas G, Plachouras N, Thilaganathan B, Nicolaides KH . Abnormal immunological development in fetuses with trisomy 18. Prenat Diagn, 1994,14(4):239-241.
doi: 10.1002/pd.1970140403
pmid: 8066033
|
[17] |
Lin KC, Park HW, Guan KL . Regulation of the Hippo pathway transcription factor TEAD. Trends Biochem Sci, 2017,42(11):862-872.
doi: 10.1016/j.tibs.2017.09.003
pmid: 28964625
|
[18] |
Chan P, Han X, Zheng BH, DeRan M, Yu JZ, Jarugumilli GK, Deng H, Pan DJ, Luo XL, Wu X. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat Chem Biol, 2016,12(4):282-289.
doi: 10.1038/nchembio.2036
pmid: 26900866
|
[19] |
Noland CL, Gierke S, Schnier PD, Murray J, Sandoval WN, Sagolla M, Dey A, Hannoush RN, Fairbrother WJ, Cunningham CN . Palmitoylation of tead transcription factors is required for their stability and function in hippo pathway signaling. Structure, 2016,24(1):179-186.
doi: 10.1016/j.str.2015.11.005
pmid: 26724994
|
[20] |
Akerberg BN, Gu F, VanDusen NJ, Zhang XR, Dong R, Li K, Zhang B, Zhou B, Sethi I, Ma Q, Wasson L, Wen T, Liu JH, Dong KZ, Conlon FL, Zhou JL, Yuan GC, Zhou PZ, Pu WT. A reference map of murine cardiac transcription factor chromatin occupancy identifies dynamic and conserved enhancers. Nat Commun, 2019,10(1):4907.
doi: 10.1038/s41467-019-12812-3
pmid: 31659164
|
[21] |
Joshi S, Davidson G, Le Gras S, Watanabe S, Braun T, Mengus G, Davidson I . TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo. PLoS Genet, 2017,13(2):e1006600.
doi: 10.1371/journal.pgen.1006600
pmid: 28178271
|
[22] |
Wen T, Liu JH, He XQ, Dong KZ, Hu GQ, Yu LY, Yin Q, Osman I, Peng JT, Zheng ZQ, Xin HB, Fulton D, Du QS, Zhang W, Zhou JL . Transcription factor TEAD1 is essential for vascular development by promoting vascular smooth muscle differentiation. Cell Death Differ, 2019,26(12):2790-2806.
doi: 10.1038/s41418-019-0335-4
pmid: 31024075
|
[23] |
Osman I, He XQ, Liu JH, Dong KZ, Wen T, Zhang FZ, Yu LY, Hu GQ, Xin HB, Zhang W, Zhou JL . TEAD1 (TEA domain transcription factor 1) promotes smooth muscle cell proliferation through upregulating slc1a5 (solute carrier family 1 member 5)-mediated glutamine uptake. Circ Res, 2019,124(9):1309-1322.
doi: 10.1161/CIRCRESAHA.118.314187
pmid: 30801233
|
[24] |
Liu RY, Lee J, Kim BS, Wang QL, Buxton SK, Balasubramanyam N, Kim JJ, Dong JR, Zhang AJ, Li SM, Gupte AA, Hamilton DJ, Martin JF, Rodney GG, Coarfa C, Wehrens XH, Yechoor VK, Moulik M . Tead1 is required for maintaining adult cardiomyocyte function, and its loss results in lethal dilated cardiomyopathy. JCI insight, 2017,2(17):e93343.
doi: 10.1172/jci.insight.93343
|
[25] |
Franco HL, Casasnovas J, Rodríguez-Medina JR, Cadilla CL . Redundant or separate entities?--roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Res, 2011,39(4):1177-1186.
doi: 10.1093/nar/gkq890
pmid: 20935057
|
[26] |
Zhao CX, Ze Y . Biological function and molecular mechanism of Twist2. Hereditas(Beijing), 2015,37(1):17-24.
|
[27] |
Liu N, Garry GA, Li S, Bezprozvannaya S, Sanchez-Ortiz E, Chen BB, Shelton JM, Jaichander P, Bassel-Duby R, Olson EN . A Twist2-dependent progenitor cell contributes to adult skeletal muscle. Nat Cell Biol, 2017,19(3):202-213.
doi: 10.1038/ncb3477
pmid: 28218909
|
[28] |
Albizua I, Chopra P, Sherman SL, Gambello MJ, Warren ST . Analysis of the genomic expression profile in trisomy 18: insight into possible genes involved in the associated phenotypes. Hum Mol Genet, 2020,29(2):238-247.
doi: 10.1093/hmg/ddz279
pmid: 31813999
|
[29] |
Koide K, Slonim DK, Johnson KL, Tantravahi U, Cowan JM, Bianchi DW . Transcriptomic analysis of cell-free fetal RNA suggests a specific molecular phenotype in trisomy 18. Hum Genet, 2011,129(3):295-305.
doi: 10.1007/s00439-010-0923-3
pmid: 21152935
|