遗传 ›› 2021, Vol. 43 ›› Issue (1): 84-93.doi: 10.16288/j.yczz.20-337
王芯悦1,3, 李亮2,3, 段秋慧2, 李大力2(), 陈金联3()
收稿日期:
2020-11-26
修回日期:
2020-12-22
出版日期:
2021-01-20
发布日期:
2021-01-04
通讯作者:
李大力,陈金联
E-mail:dlli@bio.ecnu.edu.cn;wqq_021002@163.com
作者简介:
王芯悦,在读硕士研究生,专业方向:消化内科学。E-mail: 基金资助:
Xinyue Wang1,3, Liang Li2,3, Qiuhui Duan2, Dali Li2(), Jinlian Chen3()
Received:
2020-11-26
Revised:
2020-12-22
Online:
2021-01-20
Published:
2021-01-04
Contact:
Li Dali,Chen Jinlian
E-mail:dlli@bio.ecnu.edu.cn;wqq_021002@163.com
Supported by:
摘要:
作为一种常见的表观遗传修饰类型,DNA甲基化对哺乳动物发育起着重要作用。Uhrf1作为重要的表观遗传调控因子,在DNA合成过程中可结合半甲基化的DNA同时招募DNA甲基转移酶1参与DNA甲基化的维持,保证遗传信息在细胞分裂前后的稳定传递。目前关于Uhrf1介导的DNA甲基化是否影响肠上皮发育过程尚不清楚。为探索Uhrf1在肠上皮发育中的作用,本研究成功构建了肠上皮特异性敲除Uhrf1的小鼠模型,利用HE染色对肠上皮组织形态学观察发现,与正常小鼠相比,敲除Uhrf1的小鼠肠上皮发育异常,主要表现为绒毛变短,数量减少,隐窝萎缩;通过表型分析发现,在小鼠肠上皮中特异性敲除Uhrf1后,细胞增殖明显受到抑制、凋亡细胞增加、细胞分化异常,同时肠干细胞相关基因表达降低。进一步对可能的分子机制进行初步探索发现Uhrf1缺失后 DNA甲基化水平大幅下降,诱发DNA损伤。本研究结果表明Uhrf1介导的DNA甲基化对肠上皮的正常发育成熟具有重要作用,有望丰富Uhrf1介导的DNA甲基化在体内的生物学功能,并为进一步明确Uhrf1介导的表观遗传调控机制提供实验依据。
王芯悦, 李亮, 段秋慧, 李大力, 陈金联. Uhrf1对肠上皮发育的影响[J]. 遗传, 2021, 43(1): 84-93.
Xinyue Wang, Liang Li, Qiuhui Duan, Dali Li, Jinlian Chen. Effect of Uhrf1 on intestinal development[J]. Hereditas(Beijing), 2021, 43(1): 84-93.
表1
qRT-PCR引物序列"
基因 | 引物序列(5′→3′) |
---|---|
Lgr5 | F: CAGTGTTGTGCATTTGGGGG |
R: CAAGGTCCCGCTCATCTTGA | |
Sox9 | F: CACAAGAAAGACCACCCCGA |
R: GGACCCTGAGATTGCCCAGA | |
Ascl2 | F: CGTGAAGCTGGTGAACTTGG |
R: GGATGTACTCCACGGCTGAG | |
Olfm4 | F: TCTTGGGCAGAAGGTGGGACT |
R: GGACCGTCAGGTTCAGGAGC | |
Uhrf1 | F: ACGGTGCCTACTCATTGGTC |
R: GCTTCTGGTCAGAGGACTGG | |
β-actin | F: CAGCCTTCCTTCTTGGGTAT |
R: TGATCTTGATCTTCATGGTGC |
[1] |
Smith ZD, Meissner A . DNA methylation: roles in mammalian development. Nat Rev Genet, 2013,14(3):204-220.
doi: 10.1038/nrg3354 |
[2] |
Greenberg MVC , Bourc'his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol, 2019,20(10):590-607.
doi: 10.1038/s41580-019-0159-6 pmid: 31399642 |
[3] |
Schübeler D . Function and information content of DNA methylation. Nature, 2015,517(7534):321-326.
doi: 10.1038/nature14192 pmid: 25592537 |
[4] |
Smith ZD, Sindhu C, Meissner A . Molecular features of cellular reprogramming and development. Nat Rev Mol Cell Biol, 2016,17(3):139-154.
doi: 10.1038/nrm.2016.6 pmid: 26883001 |
[5] |
Newkirk SJ, An WF . Uhrf1: a jack of all trades, and a master epigenetic regulator during spermatogenesis. Biol Reprod, 2020,102(6):1147-1152.
doi: 10.1093/biolre/ioaa026 pmid: 32101289 |
[6] |
Xue BS, Zhao JS, Feng PH, Xing J, Wu HL, Li Y . Epigenetic mechanism and target therapy of Uhrf1 protein complex in malignancies. Onco Targets Ther, 2019,12:549-559.
doi: 10.2147/OTT.S192234 pmid: 30666134 |
[7] |
Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H . The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature, 2007,450(7171):908-912.
doi: 10.1038/nature06397 pmid: 17994007 |
[8] |
Xie S, Qian CM . The growing complexity of Uhrf1- mediated maintenance DNA methylation. Genes (Basel), 2018,9(12):600.
doi: 10.3390/genes9120600 |
[9] |
Cheng JD, Yang Y, Fang J, Xiao JX, Zhu TT, Chen F, Wang P, Li Z, Yang HR, Xu YH . Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 (H3K9me3) by the plant homeodomain (PHD) and tandem tudor domain (TTD) of Uhrf1 (ubiquitin-like, containing PHD and RING finger domains, 1) protein. J Biol Chem, 2013,288(2):1329-1339.
doi: 10.1074/jbc.M112.415398 pmid: 23161542 |
[10] |
Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K, Shimamura S, Arita K, Kodama T, Ishikawa F, Koseki H, Nakanishi M . Uhrf1- dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature, 2013,502(7470):249-253.
doi: 10.1038/nature12488 |
[11] |
Harrison JS, Cornett EM, Goldfarb D, DaRosa PA, Li ZM, Yan F, Dickson BM, Guo AH, Cantu DV, Kaustov L, Brown PJ, Arrowsmith CH, Erie DA, Major MB, Klevit RE, Krajewski K, Kuhlman B, Strahl BD, Rothbart SB. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by Uhrf1. eLife, 2016,5:e17101.
doi: 10.7554/eLife.17101 pmid: 27595565 |
[12] |
Jeanblanc M, Mousli M, Hopfner R, Bathami K, Martinet N, Abbady AQ, Siffert JC, Mathieu E, Muller CD, Bronner C . The retinoblastoma gene and its product are targeted by ICBP90: a key mechanism in the G1/S transition during the cell cycle. Oncogene, 2005, 24(49):7337-7345.
doi: 10.1038/sj.onc.1208878 pmid: 16007129 |
[13] |
Tian YY, Paramasivam M, Ghosal G, Chen D, Shen X, Huang YL, Akhter S, Legerski R, Chen JJ, Seidman MM, Qin J, Li L . Uhrf1 contributes to DNA damage repair as a lesion recognition factor and nuclease scaffold. Cell Rep, 2015,10(12):1957-1966.
doi: 10.1016/j.celrep.2015.03.038 pmid: 25818288 |
[14] |
Maenohara S, Unoki M, Toh H, Ohishi H, Sharif J, Koseki H, Sasaki H . Role of Uhrf1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos. PLoS Genet, 2017,13(10):e1007042.
doi: 10.1371/journal.pgen.1007042 pmid: 28976982 |
[15] |
Jacob V, Chernyavskaya Y, Chen XT, Tan PS, Kent B, Hoshida Y, Sadler KC . DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in Uhrf1 mutant zebrafish embryos. Development, 2015,142(3):510-521.
doi: 10.1242/dev.115980 pmid: 25564650 |
[16] |
Zhang YW, Chen YS, Ma R, Jiang YW, Liu J, Lin YT, Chen SQ, Xia MY, Zou F, Zhang JS, Pan T, Wang L, Wei L, Zhang H . Uhrf1 controls thymocyte fate decisions through the epigenetic regulation of EGR1 expression. J Immunol, 2020,204(12):3248-3261.
doi: 10.4049/jimmunol.1901471 pmid: 32358021 |
[17] |
Ramesh V, Bayam E, Cernilogar FM, Bonapace IM, Schulze M, Riemenschneider MJ, Schotta G, Götz M . Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration. Genes Dev, 2016,30(19):2199-2212.
doi: 10.1101/gad.284992.116 pmid: 27798843 |
[18] |
Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA . DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature, 2010,463(7280):563-567.
doi: 10.1038/nature08683 pmid: 20081831 |
[19] |
Yang XD, Han W, Liu F . DNA methylation in vertebrate embryogenesis. Hereditas (Beijing), 2012,34(9):1108-1113.
pmid: 23017451 |
杨晓丹, 韩威, 刘峰 . DNA甲基化与脊椎动物胚胎发育. 遗传, 2012,34(9):1108-1113.
pmid: 23017451 |
|
[20] |
Bostick M, Kim JK, Estève PO, Clark A, Pradhan S, Jacobsen SE . Uhrf1 plays a role in maintaining DNA methylation in mammalian cells. Science, 2007,317(5845):1760-1764.
doi: 10.1126/science.1147939 pmid: 17673620 |
[21] |
Blanchart A, Navis AC, Assaife-Lopes N, Usoskin D, Aranda S, Sontheimer J, Ernfors P . Uhrf1 licensed self-renewal of active adult neural stem cells. Stem Cells, 2018,36(11):1736-1751.
doi: 10.1002/stem.2889 pmid: 29999568 |
[22] |
Obata Y, Furusawa Y, Endo TA, Sharif J, Takahashi D, Atarashi K, Nakayama M, Onawa S, Fujimura Y, Takahashi M, Ikawa T, Otsubo T, Kawamura YI, Dohi T, Tajima S, Masumoto H, Ohara O, Honda K, Hori S, Ohno H, Koseki H, Hase K . The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat Immunol, 2014,15(6):571-579.
doi: 10.1038/ni.2886 |
[23] |
Sadler KC, Krahn KN, Gaur NA, Ukomadu C . Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, Uhrf1. Proc Natl Acad Sci USA, 2007,104(5):1570-1575.
doi: 10.1073/pnas.0610774104 pmid: 17242348 |
[24] |
Yamashita M, Inoue K, Saeki N, Ideta-Otsuka M, Yanagihara Y, Sawada Y, Sakakibara I, Lee J, Ichikawa K, Kamei Y, Iimura T, Igarashi K, Takada Y, Imai Y. Uhrf1 is indispensable for normal limb growth by regulating chondrocyte differentiation through specific gene expression. Development, 2018, 145(1): dev157412.
doi: 10.1242/dev.160051 pmid: 29217751 |
[25] |
Jenkins Y, Markovtsov V, Lang W, Sharma P, Pearsall D, Warner J, Franci C, Huang B, Huang JN, Yam GC, Vistan JP, Pali E, Vialard J, Janicot M, Lorens JB, Payan DG, Hitoshi Y . Critical role of the ubiquitin ligase activity of Uhrf1, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell, 2005,16(12):5621-5629.
doi: 10.1091/mbc.e05-03-0194 pmid: 16195352 |
[26] |
Ma HH, Chen H, Guo X, Wang ZT, Sowa ME, Zheng LJ, Hu SB, Zeng PY, Guo R, Diao JB, Lan F, Harper JW, Shi YG, Xu YH, Shi Y . M phase phosphorylation of the epigenetic regulator uhrf1 regulates its physical association with the deubiquitylase USP7 and stability. Proc Natl Acad Sci USA, 2012,109(13):4828-4833.
doi: 10.1073/pnas.1116349109 pmid: 22411829 |
[27] |
Loughery JEP, Dunne PD, O'Neill KM, Meehan RR, McDaid JR, Walsh CP.Dnmt1 deficiency triggers mismatch repair defects in human cells through depletion of repair protein levels in a process involving the DNA damage response. Hum Mol Genet, 2011, 20(16):3241-3255.
doi: 10.1093/hmg/ddr236 |
[28] |
Tien AL, Senbanerjee S, Kulkarni A, Mudbhary R, Goudreau B, Ganesan S, Sadler KC, Ukomadu C . Uhrf1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis. Biochem J, 2011,435(1):175-185.
doi: 10.1042/BJ20100840 pmid: 21214517 |
[29] |
Sheaffer KL, Kim R, Aoki R, Elliott EN, Schug J, Burger L, Schübeler D, Kaestner KH . DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes Dev, 2014,28(6):652-664.
doi: 10.1101/gad.230318.113 pmid: 24637118 |
[30] |
Elliott EN, Sheaffer KL, Schug J, Stappenbeck TS, Kaestner KH . Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium. Development, 2015,142(12):2163-2172.
doi: 10.1242/dev.117341 pmid: 26023099 |
[31] |
Elliott EN, Sheaffer KL, Kaestner KH . The 'de novo' DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. eLife, 2016,5:e12975.
doi: 10.7554/eLife.12975 pmid: 26808831 |
[32] |
Chen C, Zhai SL, Zhang L, Chen JJ, Long XH, Qin J, Li JH, Huo R, Wang XM . Uhrf1 regulates germinal center B cell expansion and affinity maturation to control viral infection. J Exp Med, 2018,215(5):1437-1448.
doi: 10.1084/jem.20171815 pmid: 29618490 |
[33] |
Xiang HD, Yuan LF, Gao X, Alexander PB, Lopez O, Lau C, Ding Y, Chong MY, Sun T, Chen R, Liu SQ, Wu HY, Wan Y, Randell SH, Li QJ, Wang XF . Uhrf1 is required for basal stem cell proliferation in response to airway injury. Cell Discov, 2017,3:17019.
doi: 10.1038/celldisc.2017.19 pmid: 28626588 |
[34] |
Cui Y, Chen XF, Zhang JL, Sun X, Liu HF, Bai L, Xu CQ, Liu XL . Uhrf1 controls iNKT cell survival and differentiation through the Akt-mTOR axis. Cell Rep, 2016,15(2):256-263.
doi: 10.1016/j.celrep.2016.03.016 pmid: 27050515 |
[1] | 许梦萱, 周明. 植物RNA聚合酶IV调控DNA甲基化和发育的研究进展[J]. 遗传, 2022, 44(7): 567-580. |
[2] | 王雅楠, 徐涛, 王万鹏, 张庆祝, 解莉楠. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. |
[3] | 张向前, 李楠, 解新明. 表观遗传学综合性实验设计与探讨[J]. 遗传, 2021, 43(12): 1179-1187. |
[4] | 崔亨贞, 孙蜜烛, 王润芝, 李辰雨, 黄予暄, 黄秋菊, 乔晓孟. 内侧前额叶皮质DNA甲基化调控大鼠酒精相关行为[J]. 遗传, 2020, 42(1): 112-125. |
[5] | 王昕源, 张雨, 杨楠, 程禾, 孙玉洁. DNMT3a通过提升基因内部甲基化介导紫杉醇诱导的LINE-1异常表达[J]. 遗传, 2020, 42(1): 100-111. |
[6] | 黄鑫,陈永强,徐国良,彭淑红. 脂肪组织DNA甲基化与糖尿病和肥胖的发生发展[J]. 遗传, 2019, 41(2): 98-110. |
[7] | 杨旭琼, 吴珍芳, 李紫聪. 哺乳动物体细胞核移植表观遗传重编程研究进展[J]. 遗传, 2019, 41(12): 1099-1109. |
[8] | 潘云枫, 王演怡, 陈静雯, 范怡梅. 线粒体代谢介导的表观遗传改变与衰老研究[J]. 遗传, 2019, 41(10): 893-904. |
[9] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
[10] | 刘辰东, 杨露, 蒲红州, 杨琼, 黄文耀, 赵雪, 朱砺, 张顺华. 运动对骨骼肌基因表达的表观遗传调控作用[J]. 遗传, 2017, 39(10): 888-896. |
[11] | 张轲, 冯光德, 张宝云, 向伟, 陈龙, 杨芳, 储明星, 王凭青. 表观遗传标记在猪分子育种中的研究与应用前景[J]. 遗传, 2016, 38(7): 634-643. |
[12] | 朱屹然,张美玲,翟志超,赵云蛟,马馨. 生殖细胞及早期胚胎基因组印记的表观调控[J]. 遗传, 2016, 38(2): 103-108. |
[13] | 刘姝丽,张胜利,俞英. 同卵双胞胎在复杂性状DNA甲基化调控机制研究中的应用[J]. 遗传, 2016, 38(12): 1043-1055. |
[14] | 刘洋洋, 崔恒宓. DNA甲基化分析中重亚硫酸盐处理DNA转化效率的评估方法[J]. 遗传, 2015, 37(9): 939-944. |
[15] | 谢龙祥, 于召箫, 郭思瑶, 李萍, AbualgasimElgailiAbdalla, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用[J]. 遗传, 2015, 37(8): 793-800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: