遗传 ›› 2025, Vol. 47 ›› Issue (9): 1032-1041.doi: 10.16288/j.yczz.24-326
陈昊1(), 董瑞1, 王岩峰2, 谢净倍1, 张招旭1, 郑荣泉1,3(
)
收稿日期:
2024-11-11
修回日期:
2025-01-17
出版日期:
2025-05-07
发布日期:
2025-05-07
通讯作者:
郑荣泉,教授,研究方向:动物保护生物学。E-mail: zhengrq@zjnu.cn作者简介:
陈昊,硕士研究生,专业方向:动物学研究。E-mail: 898148121@qq.com
基金资助:
Hao Chen1(), Rui Dong1, Yanfeng Wang2, Jingbei Xie1, Zhaoxu Zhang1, Rongquan Zheng1,3(
)
Received:
2024-11-11
Revised:
2025-01-17
Published:
2025-05-07
Online:
2025-05-07
Supported by:
摘要: 义乌小鲵(Hynobius yiwuensis)是中国特有的易危小鲵科动物,仅分布于浙江省的部分丘陵山地。本研究采用体式显微镜观察了义乌小鲵断肢再生的过程,并利用转录组测序技术,分析再生过程差异表达基因。结果表明:义乌小鲵肢体具有较强的再生能力,再生过程可分为创伤愈合、组织溶解与去分化、再生芽基形成、形态发生及再分化4个阶段。转录组测序分析表明,肢体再生过程中存在大量差异表达的基因,且其表达模式随肢体切除后的时间推移发生动态变化。通过筛选肢体再生过程中的差异表达基因,发现IL10参与细胞免疫及炎症反应,TGFβ3促进早期肌肉组织再生,而MMPs家族相关基因在组织重塑过程中发挥重要作用。对10个差异基因进行qRT-PCR验证,结果证明转录组测序结果可靠。本研究初步推测义乌小鲵可能通过Wnt/β-catenin、TGFβ、BMP等信号通路调控肢体再生过程,并促进无瘢痕组织修复。
陈昊, 董瑞, 王岩峰, 谢净倍, 张招旭, 郑荣泉. 义乌小鲵肢体再生及其分子机制[J]. 遗传, 2025, 47(9): 1032-1041.
Hao Chen, Rui Dong, Yanfeng Wang, Jingbei Xie, Zhaoxu Zhang, Rongquan Zheng. The molecular mechanism of limb regeneration of Hynobius yiwuensis[J]. Hereditas(Beijing), 2025, 47(9): 1032-1041.
[1] | Fei XM. Hynobius yiwuensis population resources investigation, embryonic development and genetic diversity research[Dissertation]. Zhejiang Normal University, 2020. |
费潇鸣. 义乌小鲵种群资源调查、胚胎发育及遗传多样性研究[学位论文]. 浙江师范大学, 2020. | |
[2] | Fei L, Ye CY, Hu SQ, eds. Fauna Sinica: Amphibia, Volume 1, Caudata. Beijing: Science Press, 2006. |
费梁, 叶昌媛, 胡淑琴编著. 中国动物志两栖纲(上卷)有尾目. 北京: 科学出版社, 2006. | |
[3] | Xie JB, Fei XM, Lou XB, Zhang JC, Huang JC. Effects of rearing density and food density on intraspecific competition rate in Hynobius yiwuensis. Jiangxi Fish Sci Technol, 2022, (2): 7-9. |
谢净倍, 费潇鸣, 楼晓波, 张建春, 黄建成. 养殖密度和饵料密度对义乌小鲵同种相残率的影响. 江西水产科技, 2022, (2): 7-9. | |
[4] |
Ivankovic M, Haneckova R, Thommen A, Grohme MA, Vila-Farré M, Werner S, Rink JC. Model systems for regeneration: planarians. Development, 2019, 146(17): dev167684.
pmid: 31511248 |
[5] |
Maden M, Varholick JA. Model systems for regeneration: the spiny mouse, Acomys cahirinus. Development, 2020, 147(4): dev167718.
pmid: 32098790 |
[6] |
Marques IJ, Lupi E, Mercader N. Model systems for regeneration: zebrafish. Development, 2019, 146(18): dev167692.
pmid: 31540899 |
[7] | Tang J. Multi-Omics analysis of limb regeneration in Cynops orientalis[Dissertation]. Northwest University, 2020. |
唐婕. 东方蝾螈肢体再生的多组学分析[学位论文]. 西北大学, 2020. | |
[8] |
Mahapatra C, Naik P, Swain SK, Mohapatra PP. Unravelling the limb regeneration mechanisms of Polypedates maculatus, a sub-tropical frog, by transcriptomics. BMC Genomics, 2023, 24(1): 122.
pmid: 36927452 |
[9] | Tan H, Wen XM, Wang X, Ye G, Chen FL. Progress of mechanisms regulating dedifferentiation of terminally differentiated cells during salamander limb regeneration. Chin Bull Life Sci, 2021, 33(2): 199-204. |
谭泓, 温晓敏, 王雪, 叶岗, 陈富林. 蝾螈肢体再生中终末分化细胞去分化调控机制的研究进展. 生命科学, 2021, 33(2): 199-204. | |
[10] |
Denis JF, Sader F, Gatien S, Villiard É, Philip A, Roy S. Activation of Smad2 but not Smad3 is required to mediate TGF-β signaling during axolotl limb regeneration. Development, 2016, 143(19): 3481-3490.
pmid: 27549395 |
[11] |
Kurabuchi S, Inoue S. Denervation effects on limb regeneration in postmetamorphic Xenopus laevis: (regeneration/ denervation/Xenopus/limb). Dev Growth Differ, 1983, 25(5): 463-467.
pmid: 37281329 |
[12] |
Hoppler S, Conlon FL. Xenopus: experimental access to cardiovascular development, regeneration discovery, and cardiovascular heart-defect modeling. Cold Spring Harb Perspect Biol, 2020, 12(6): a037200.
pmid: 31767648 |
[13] |
Everson KM, Gray LN, Jones AG, Lawrence NM, Foley ME, Sovacool KL, Kratovil JD, Hotaling S, Hime PM, Storfer A, Parra-Olea G, Percino-Daniel R, Aguilar- Miguel X, O'Neill EM, Zambrano L, Shaffer HB, Weisrock DW. Geography is more important than life history in the recent diversification of the tiger salamander complex. Proc Natl Acad Sci USA, 2021, 118(17): e2014719118.
pmid: 33888580 |
[14] |
Abe G, Hayashi T, Yoshida K, Yoshida T, Kudoh H, Sakamoto J, Konishi A, Kamei Y, Takeuchi T, Tamura K, Yokoyama H. Insights regarding skin regeneration in non-amniote vertebrates: skin regeneration without scar formation and potential step-up to a higher level of regeneration. Semin Cell Dev Biol, 2020, 100: 109-121.
pmid: 31831357 |
[15] |
Satoh A, Gardiner DM, Bryant SV, Endo T. Nerve-induced ectopic limb blastemas in the Axolotl are equivalent to amputation-induced blastemas. Dev Biol, 2007, 312(1): 231-244.
pmid: 17959163 |
[16] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 2011, 29(7): 644-652.
pmid: 21572440 |
[17] |
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. Nat Genet, 2000, 25(1): 25-29.
pmid: 10802651 |
[18] |
Towfic F, VanderPlas S, Oliver CA, Couture O, Tuggle CK, Greenlee MHW, Honavar V. Detection of gene orthology from gene co-expression and protein interaction networks. BMC Bioinformatics, 2010, 11(Suppl 3): S7.
pmid: 20438654 |
[19] |
Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol, 2004, 5(2): R7.
pmid: 14759257 |
[20] | Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004, 32(suppl_1): D277-D280. |
[21] | An S, Schorfheide F. Bayesian analysis of DSGE models. Economet Rev, 2007, 26(2-4): 113-172. |
[22] |
Com E, Boitier E, Marchandeau JP, Brandenburg A, Schroeder S, Hoffmann D, Mally A, Gautier JC. Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats. Toxicol Appl Pharmacol, 2012, 258(1): 124-133.
pmid: 22061828 |
[23] |
Simon A, Tanaka EM. Limb regeneration. Wiley Interdiscip Rev Dev Biol, 2013, 2(2): 291-300.
pmid: 24009038 |
[24] |
Brockes JP. Amphibian limb regeneration: rebuilding a complex structure. Science, 1997, 276(5309): 81-87.
pmid: 9082990 |
[25] |
Leigh ND, Dunlap GS, Johnson K, Mariano R, Oshiro R, Wong AY, Bryant DM, Miller BM, Ratner A, Chen A, Ye WW, Haas BJ, Whited JL. Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nat Commun, 2018, 9(1): 5153.
pmid: 30514844 |
[26] |
Diogo R, Murawala P, Tanaka EM. Is salamander hindlimb regeneration similar to that of the forelimb? anatomical and morphogenetic analysis of hindlimb muscle regeneration in GFP-transgenic axolotls as a basis for regenerative and developmental studies. J Anat, 2014, 224(4):459-468.
pmid: 24325444 |
[27] |
Alibardi L. Review: biological and molecular differences between tail regeneration and limb scarring in lizard: an inspiring model addressing limb regeneration in amniotes. J Exp Zool B Mol Dev Evol, 2017, 328(6): 493-514.
pmid: 28612481 |
[28] |
Phipps LS, Marshall L, Dorey K, Amaya E. Model systems for regeneration: Xenopus. Development, 2020, 147(6): dev180844.
pmid: 32193208 |
[29] |
Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta, 2011, 1813(5): 878-888.
pmid: 21296109 |
[30] | Dong L, Li M, Tang XH, Huang L, Zhang CC, Guo YH. Research progress on the role of interleukin-10 in maintaining intestinal homeostasis. Chin J Cell Biol, 2023, 45(9): 1409-1418. |
童乐, 李梅, 唐小涵, 黄玲, 张长城, 郭煜晖. 白细胞介素-10在维持肠道稳态中的作用研究进展. 中国细胞生物学学报, 2023, 45(9): 1409-1418. | |
[31] | Shi BM, Xie XD, Wang J. The role of Axin2+cells in periodontal tissue development and regeneration. J Prev Treat Stom Dis, 2022, 30(6): 433-437. |
时彬冕, 谢旭东, 王骏. Axin2阳性细胞在牙周组织发育与再生中的作用. 口腔疾病防治, 2022, 30(6): 433-437. | |
[32] |
Liu Q, Cheng Z, Luo LZ, Yang Y, Zhang ZZ, Ma HH, Chen T, Huang X, Lin SY, Jin MJ, Li QX, Li XT. C-terminus of MUC16 activates Wnt signaling pathway through its interaction with β-catenin to promote tumorigenesis and metastasis. Oncotarget, 2016, 7(24): 36800-36813.
pmid: 27167110 |
[33] | Wang GR, Xiao C, Wang YT. The role of TGF-β/ Myostatin in skeletal muscle regeneration and fibrosis. Chin J Basic Med Tradit Chin Med, 2012, 18(5): 579-582. |
王荣国, 肖诚, 王云亭. TGF-β/Myostatin在骨骼肌再生与纤维化中的作用. 中国中医基础医学杂志, 2012, 18(5): 579-582. | |
[34] |
Lee MS, Wan J, Goldman D. Tgfb3 collaborates with PP2A and notch signaling pathways to inhibit retina regeneration. eLife, 2020, 9: e55137.
pmid: 32396062 |
[35] |
Kaminska B, Wesolowska A, Danilkiewicz M. TGF beta signalling and its role in tumour pathogenesis. Acta Biochim Pol, 2005, 52(2): 329-337.
pmid: 15990918 |
[36] |
Vinarsky V, Atkinson DL, Stevenson TJ, Keating MT, Odelberg SJ. Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol, 2005, 279(1): 86-98.
pmid: 15708560 |
[37] |
Fan YF, Ye JQ, Shen FX, Zhu YQ, Yeghiazarians Y, Zhu W, Chen YM, Lawton MT, Young WL, Yang GY. Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab, 2008, 28(1): 90-98.
pmid: 17519976 |
[38] |
Lin WZ, Zhu XH, Gao L, Mao MY, Gao DM, Huang ZW. Osteomodulin positively regulates osteogenesis through interaction with BMP2. Cell Death Dis, 2021, 12(2): 147.
pmid: 33542209 |
[39] |
Chen QQ, Liu QY, Zhang YS, Li SY, Yi S. Leukemia inhibitory factor regulates Schwann cell proliferation and migration and affects peripheral nerve regeneration. Cell Death Dis, 2021, 12(5): 417.
pmid: 33888681 |
[1] | 冯莹, 何晓丽, 刘宇, 王进. 基于质谱的RNA及其修饰分析[J]. 遗传, 2025, 47(8): 885-902. |
[2] | 刘姣姣, 卢心河, 殷红彦, 周海龙, 李汉增, 徐顺清. 基于转录组学分析秀丽线虫对乙酸钙不动杆菌的摄食偏好行为[J]. 遗传, 2025, 47(7): 786-796. |
[3] | 陈敏, 韩娜, 缪玉, 强裕俊, 张雯, 刘蓬勃, 刘起勇, 栗冬梅. 物种分化因素影响下的巴尔通体差异转录组分析[J]. 遗传, 2025, 47(3): 366-381. |
[4] | 韩超飞, 陈灵, 王源秀, 程前, 左胜, 刘华彬, 王程亮. 基于转录组学挖掘与分析NJ9108水稻种子寿命的关键基因[J]. 遗传, 2025, 47(3): 351-365. |
[5] | 吴岳阳, 周小燕, 吴玉峰, 黄驹. NMD途径功能缺陷对水稻表型及转录组的影响[J]. 遗传, 2024, 46(7): 540-551. |
[6] | 韦恒, 刘天鹏, 何继红, 董孔军, 任瑞玉, 张磊, 李亚伟, 郝子义, 杨天育. 糜子GRF转录因子全基因组鉴定及在茎分生组织中的表达特征[J]. 遗传, 2024, 46(3): 242-255. |
[7] | 陈瑶, 温馨, 袁芳媛, 彭钞灵, 王翠喆, 张君, 孟平平. 基于生物信息学对SLC25A21下游靶基因的筛选及验证[J]. 遗传, 2024, 46(12): 1055-1065. |
[8] | 温馨, 梅锦, 钱美玉, 蒋一丹, 王娟, 许士博, 王翠喆, 张君. 基于转录组测序对GULP1下游靶基因筛选及分析[J]. 遗传, 2024, 46(10): 860-870. |
[9] | 徐晓鹏, 范小英. 单细胞精度的表达数量性状位点研究进展[J]. 遗传, 2024, 46(10): 795-806. |
[10] | 时文睿, 渠鸿竹, 方向东. 痛风的多组学研究进展[J]. 遗传, 2023, 45(8): 643-657. |
[11] | 韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[12] | 王芳, 张跃博, 蒋谦, 印遇龙, 谭碧娥, 陈家顺. 宁乡猪皮下脂肪与肌内脂肪组织转录组差异分析[J]. 遗传, 2023, 45(12): 1147-1157. |
[13] | 郭彦, 杨乐乐, 戚华宇. 小鼠雄性生殖干细胞转录组分析揭示成熟精原干细胞特征[J]. 遗传, 2022, 44(7): 591-608. |
[14] | 骆红波, 曹鹏博, 周钢桥. DNA甲基化驱动的转录表达特征作为肝癌预后预测标志物的价值[J]. 遗传, 2020, 42(8): 775-787. |
[15] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: