[1] Mackay TFC. Quantitative trait loci in Drosophila. Nat Rev Genet, 2001, 2(1): 11-20.[2] Segre D, DeLuna A, Church GM, Kishony R. Modular epistasis in yeast metabolism. Nat Genet, 2004, 37(1): 77-83.[3] Williams SM, Haines JL, Moore JH. The use of animal models in the study of complex disease: all else is never equal or why do so many human studies fail to replicate animal findings? BioEssays, 2004, 26(2): 170-179.[4] Moore JH. A global view of epistasis. Nat Genet, 2005, 37(1): 13-14.[5] Phillips PC. The language of gene interaction. Genetics, 1998, 149(3): 1167-1171.[6] http://www.microbiologyprocedure.com/genetics/genetic-interaction/dominant-and-recessive-interactions-13-3.htm.[7] Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet, 2001, 69(1): 138-147.[8] Moore JH. Computational analysis of gene-gene interac-tions using multifactor dimensionality reduction. Expert Rev Mol Diagn, 2004, 4(6): 795-803.[9] Hahn LW, Ritchie MD, Moore JH. Multifactor dimen-sionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics, 2003, 19(3): 376-382.[10] Tsai CT, Lai LP, Lin JL, Chiang FT, Hwang JJ, Ritchie MD, Moore JH, Hsu KL, Tseng CD, Liau CS, Tseng YZ. Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation, 2004, 109: 1640-1646.[11] Cho YM, Ritchie MD, Moore JH, Park JY, Lee KU, Shin HD, Lee HK, Park KS. Multifactor-dimensionality reduc-tion shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia, 2004, 47(3): 549-554.[12] Coffey CS, Hebert PR, Ritchie MD, Krumholz HM, Gaziano JM, Ridker PM, Brown NJ, Vaughan DE, Moore JH. An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene-gene interactions on risk of myocardial infarction: the importance of model validation. BMC Bioinformatics, 2004, 5(1): 49. [13] Park MY, Hastie T. Penalized logistic regression for detecting gene interactions. Biostatistics, 2008, 9(1): 30-50.[14] Lee AH, Silvapulle MJ. Ridge estimation in logistic regression. Comm in Statis-Simulation and Comp, 1988, 17(4): 1231-1257.[15] Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo: Morgan Kaufmann, 1988.[16] Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D. How to infer gene networks from expression profiles. Mol Syst Biol, 2007, 3(1): 78.[17] Zhang Y, Liu JS. Bayesian inference of epistatic interactions in case-control studies. Nat Genet, 2007, 39(9): 1167-1173.[18] Hoh J, Wille A, Ott J. Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Res, 2001, 11(12): 2115-2119.[19] Ott J, Hoh J. Set association analysis of SNP case-control and microarray data. J Comput Biol, 2003, 10(3-4): 569-574.[20] Breiman L. Random forests. Mach Learn, 2001, 45(1): 5-32.[21] McKinney BA, Reif DM, Ritchie MD, Moore JH. Machine learning for detecting gene-gene interactions: a review. Appl Bioinformatics, 2006, 5(2): 77-88.[22] Jiang R, Tang W, Wu X, Fu W. A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinformatics, 2009, 10(S1): S65.[23] Breiman L. Classification and Regression Trees. New York: Chapman & Hall/CRC, 1984.[24] Cook NR, Zee RYL, Ridker PM. Tree and spline based association analysis of gene-gene interaction models for ischemic stroke. Stat Med, 2004, 23(9): 1439-1453.[25] Lunetta KL, Hayward LB, Segal J, van Eerdewegh P. Screening large-scale association s |