[1] Noberg J, Swaney DP, Dushoff J, Casagrandi R, Levin SA. Phenotypic diversity and ecosystem functioning in chang-ing environments: A theoretical framework. Proc Natl Acad Sci USA, 2001, 98(20): 11376-11381.[2] Reusch TBH, Ehlers A, Hämmerli A, Worm B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Natl Acad Sci, 2005, 102(8): 2826-2831.[3] Zhu YY, Chen HR, Fan JH, Wang YY, Li Y, Chen JB, Fan JX, Yang SS, Hu LP, Leung H, Mew TW, Teng PS, Wang ZH, Mundt CC. Genetic diversity and disease control in rice. Nature, 2000, 406(6797): 718-722.[4] Smale M, Bellon MR, Jarvis D, Sthapit B. Economic con-cepts for designing policies to conserve crop genetic resources on-farms. Genet Resour Crop Evol, 2004, 51(2): 121-135.[5] Kremen C, Ricketts T. Global perspectives on pollination disruptions. Conserv Biol, 2000, 14(5): 1226-1228.[6] Ricketts TH. Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol, 2004, 18(5): 1262-1271.[7] Richards AJ. Does low biodiversity resulting from modern agricultural practices affect crop pollination and yield? Ann Bot, 2001, 88(2): 165-172.[8] Ou SH. Rice Disease. 2nd ed. Kew UK: Common-Wealth Mycological Institute, 1985.[9] 李成云, 陈琼珠, 陈宗麒, 罗朝喜, 林长生, 伊势一男. 云南省稻瘟病菌的交配型分布. 中国农业科学, 1996, 29(6): 60-64.[10] 朱有勇. 遗传多样性与作物病害持续控制. 北京: 科学出版社, 2007.[11] Mew TW, Borrmeo E, Hardy B. Exploiting Biodiversity for Sustainable Pest Management. Philippine: Interna-tional Rice Research, 2001.[12] Villaréal LMMA, Lannou C. Selection for increased spore efficacy by host genetic background in a wheat powdery mildew population. Phytopathology, 2000, 90(12): 1300-1306.[13] Huang R, Kranz J, Welz HG. Selection of pathotypes of Erysiphe graminis f. sp. hordei in pure and mixed stands of spring barley. Plant Pathol, 1994, 43(3): 458-470.[14] Wolfe MS, Barret JA. Can we lead the pathogen astray? Plant Dis, 1980, 64(2): 148-151.[15] Wolfe MS. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu Rev Phytopathol, 1985, 23(1): 251-273.[16] Garrett KA, Mundt CC. Host diversity can reduce potato late blight severity for focal and general patterns of pri-mary inoculum. Phytopathology, 2000, 90(12): 1307-1312.[17] Rhoades RE, Bebbington AJ. Mixting it up: variations in Andean farmers’ rationales for intercropping of potatoes. Field Crops Res, 1990, 25(1-2): 145-156.[18] Garrett KA, Nelson RJ, Mundt CC, Chacón RE, Jaramllo RE, Forbes GA. The effect of host diversity and other management components on epidemics of potato late blight in the humid highland tropics. Phytopathol, 2001, 91(10): 993-1000.[19] 刘二明, 朱有勇, 刘新民, 张顺元, 刘安民, 叶华智. 丘陵区水稻品种多样性混合间栽控制稻瘟病研究. 作物研究, 2002, 16(1): 7-10.[20] 顾明华, 黎晓峰. 硅对减轻水稻的铝胁迫效应及其机理研究. 植物营养与肥料学报, 2002, 8(3): 360-366.[21] Gu MH, KoyaMa H, Hara T. Effects of silicon supply on amelioration of aluminum injury and chemical forms of aluminum in rice plants. Jpn J Soil Sci Plant Nutr, 1998, 69(5): 498-505.[22] Cocker KM, Evans DE, Hodson MJ. The amelioration of aluminium toxicity by silicon in higher plants: Solution chemistry or an in planta mechanism? Plant Physiol, 1998, 104(4): 608-614.[23] Hodson MJ, Sangster AG. The interaction between silicon and aluminum in Sorghum bicolor (L.) Moench: Growth an analysis and X-ray microanalysis. Aan Bot, 1993, 72(5): 389-400.[24] Hara T, Gu MH, Koyana H. Ameliorative effect of silicon on aluminum injury in the rice plant. Soil Sci Plant Nutr, 1999, 45(4): 929-936.[25] 唐旭, 郑毅, 汤利, 张朝春, 朱有勇, 张福锁. 不同品种间作条件下的氮硅营养对水稻稻瘟病发生的影响. 中国水稻科学, 2006, 20(6): 663-666.[26] 高尔明, 赵全志. 水稻施用硅肥增产的生理效应研究. 耕作与栽培, 1998, 28(5): 20-22.[27] Hipps LE, Asrar G, Kanemasu ET. Assessing the inter-ception of photosynthetically active radiation in winter wheat. Agri Meteor, 1983, 28(3): 253-259.[28] 潘学标, 邓绍华, 王延琴, 崔秀稳, 董占山. 麦棉套种对棉行太阳辐射和温度的影响. 棉花学报, 1996, 8(1): 44-49.[29] Reynolds MP, Singh RP, Ibrahim A, Ageeb OAA, Lar-gué-Saavedra, Quick JS. Evaluating physiological traits to compliment empirical selection for wheat in warm environments. Euphytica, 1998, 100 (1-3): 85-94.[30] 张嵩午, 宋哲民, 闵东红. 冷型小麦及其育种意义. 西北农业大学学报, 1996, 24(1): 14-17.[31] 冯佰利, 王长发, 苗芳, 张嵩午, 何永杰. 干旱条件下冷型小麦叶片气体交换特性研究. 麦类作物学报, 2001, 21(4): 48-51.[32] 冯佰利, 王长发, 苗芳, 张嵩午, 何永杰. 抗旱小麦的冷温特性研究. 西北农林科技大学学报(自然科学版), 2002, 30(2): 6-10.[33] Reynolds MP, Balota M, Delgado MIB, Amani I, Fischer RA. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol, 1994, 21(6): 717-730.[34] Rashid A, Stark JC, Tanveer A, Mustafa T. Use of canopy temperature measurements as a screening tool for drought tolerance in spring wheat. J Agron Crop Sci, 1999, 182(4): 231-238.[35] 邓强辉, 潘晓华, 石庆华. 作物冠层温度的研究进展. 生态学杂志, 2009, 28(6): 1162-1165.[36] Burdon JJ, Jarosz AM, Kirby GC. Pattern and patchiness in plant-pathogen interactions-causes and consequences. Annu Rev Ecol Syst, 1989, 20(1): 119-136.[37] Burdon JJ. Disease and Plant Population Biology. Cam-bridge: Cambridge University Press, 1987.[38] Dwyer G, Elkinton JS, Buonaccorsi JP. Host heterogeneity in susceptibility and disease dynamics: Tests of a mathe-matical model. Am Nat, 1997, 150(6): 685-707. |