[1] | George B, Seals S, Aban I . Survival analysis and regression models. J Nucl Cardiol, 2014,21:686-694. | [2] | Rasmussen L, Pratt N, Hansen MR, Hallas J, Pottegard A . Using the "proportion of patients covered" and the Kaplan- Meier survival analysis to describe treatment persistence. Pharmacoepidemiol Drug Saf, 2018,27:867-871. | [3] | Hsu CH, Yu M . Cox regression analysis with missing covariates via nonparametric multiple imputation. Stat Methods Med Res, 2018,962280218772592. | [4] | Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W , Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015,43:e47. | [5] | Heyer LJ, Kruglyak S, Yooseph S . Exploring expression data: identification and analysis of coexpressed genes. Genome Res, 1999,9:1106-1115. | [6] | Bunger R, Mallet RT . Metabolomics and receiver operating characteristic analysis: a promising approach for sepsis diagnosis. Crit Care Med, 2016,44:1784-1785. | [7] | Grau J, Grosse I, Keilwagen J . PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics, 2015,31:2595-2597. | [8] | Cichonska A, Rousu J, Marttinen P, Kangas AJ, Soininen P, Lehtimaki T, Raitakari OT, Jarvelin MR, Salomaa V, Ala-Korpela M, Ripatti S , Pirinen M. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. Bioinformatics, 2016,32:1981-1989. | [9] | Dimou NL, Tsirigos KD, Elofsson A, Bagos PG . GWAR: robust analysis and meta-analysis of genome-wide association studies. Bioinformatics, 2017,33:1521-1527. | [10] | Chin L, Andersen JN, Futreal PA . Cancer genomics: from discovery science to personalized medicine. Nature Medicine, 2011,17:297-303. | [11] | Tomczak K, Czerwinska P, Wiznerowicz M . The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn), 2015,19:A68-77. | [12] | Hanahan D, Weinberg RA . The hallmarks of cancer. Cell, 2000,100:57-70. | [13] | Sirintrapun SJ, Zehir A, Syed A, Gao J, Schultz N, Cheng DT . Translational bioinformatics and clinical research (biomedical) informatics. Clin Lab Med, 2016,36:153-181. | [14] | Li QK, Pavlovich CP, Zhang H, Kinsinger CR, Chan DW . Challenges and opportunities in the proteomic characterization of clear cell renal cell carcinoma (ccRCC): a critical step towards the personalized care of renal cancers. Semin Cancer Biol, 2018, DOI: 10.1016/j.semcancer.2018.06.004. | [15] | Smith CC, Beckermann KE ,Bortone DS, de Cubas AA, Bixby LM, L |
[1] |
孙清玙, 周阳, 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳. 巨噬细胞相关基因与非小细胞肺癌预后和肿瘤微环境的分析[J]. 遗传, 2023, 45(8): 684-699. |
[2] |
严程浩, 白韦钰, 张智猛, 沈俊岭, 王友军, 孙建伟. STIM1在肿瘤发生及转移中的研究进展[J]. 遗传, 2023, 45(5): 395-408. |
[3] |
马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[4] |
常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127. |
[5] |
郝庆刚, 孙凤桂, 严程浩, 孙建伟. MT1-MMP在肿瘤转移中的研究进展[J]. 遗传, 2022, 44(9): 745-755. |
[6] |
赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
[7] |
寇艳妮, 岑山, 李晓宇. LINE-1在肿瘤早期诊断和治疗中的研究与应用[J]. 遗传, 2021, 43(6): 571-579. |
[8] |
王卓, 申笑涵, 施奇惠. 单细胞基因组测序技术新进展及其在生物医学中的应用[J]. 遗传, 2021, 43(2): 108-117. |
[9] |
刘倩, 李春燕. 增强子的鉴定及其在肿瘤研究中的应用[J]. 遗传, 2020, 42(9): 817-831. |
[10] |
赵利楠, 王娜, 杨国良, 苏现斌, 韩泽广. 基于单细胞靶向测序探究基因碱基突变的方法[J]. 遗传, 2020, 42(7): 703-712. |
[11] |
陈淑敏, 马铃, 岑山. Schlafen家族蛋白在肿瘤和病毒感染中的研究进展[J]. 遗传, 2020, 42(5): 444-451. |
[12] |
张强, 顾明亮. 单细胞测序技术及其在乳腺癌研究中的应用[J]. 遗传, 2020, 42(3): 250-268. |
[13] |
程香荣,胡兴琳,姜琦,黄星卫,王楠,雷蕾. 核糖体DNA转录的表观调控与肿瘤发生[J]. 遗传, 2019, 41(3): 185-192. |
[14] |
吴保军,王卓,董宇,邓宇亮,施奇惠. 肺癌恶性胸腔积液中稀有肿瘤细胞的鉴定与单细胞测序分析[J]. 遗传, 2019, 41(2): 175-184. |
[15] |
黎伟, 秦俊, 汪晖, 陈廖斌. 表观遗传生物标志物在人类疾病早期诊治中的研究进展[J]. 遗传, 2018, 40(2): 104-115. |
|