| [1] | George B, Seals S, Aban I . Survival analysis and regression models. J Nucl Cardiol, 2014,21:686-694. | | [2] | Rasmussen L, Pratt N, Hansen MR, Hallas J, Pottegard A . Using the "proportion of patients covered" and the Kaplan- Meier survival analysis to describe treatment persistence. Pharmacoepidemiol Drug Saf, 2018,27:867-871. | | [3] | Hsu CH, Yu M . Cox regression analysis with missing covariates via nonparametric multiple imputation. Stat Methods Med Res, 2018,962280218772592. | | [4] | Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W , Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015,43:e47. | | [5] | Heyer LJ, Kruglyak S, Yooseph S . Exploring expression data: identification and analysis of coexpressed genes. Genome Res, 1999,9:1106-1115. | | [6] | Bunger R, Mallet RT . Metabolomics and receiver operating characteristic analysis: a promising approach for sepsis diagnosis. Crit Care Med, 2016,44:1784-1785. | | [7] | Grau J, Grosse I, Keilwagen J . PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics, 2015,31:2595-2597. | | [8] | Cichonska A, Rousu J, Marttinen P, Kangas AJ, Soininen P, Lehtimaki T, Raitakari OT, Jarvelin MR, Salomaa V, Ala-Korpela M, Ripatti S , Pirinen M. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis. Bioinformatics, 2016,32:1981-1989. | | [9] | Dimou NL, Tsirigos KD, Elofsson A, Bagos PG . GWAR: robust analysis and meta-analysis of genome-wide association studies. Bioinformatics, 2017,33:1521-1527. | | [10] | Chin L, Andersen JN, Futreal PA . Cancer genomics: from discovery science to personalized medicine. Nature Medicine, 2011,17:297-303. | | [11] | Tomczak K, Czerwinska P, Wiznerowicz M . The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn), 2015,19:A68-77. | | [12] | Hanahan D, Weinberg RA . The hallmarks of cancer. Cell, 2000,100:57-70. | | [13] | Sirintrapun SJ, Zehir A, Syed A, Gao J, Schultz N, Cheng DT . Translational bioinformatics and clinical research (biomedical) informatics. Clin Lab Med, 2016,36:153-181. | | [14] | Li QK, Pavlovich CP, Zhang H, Kinsinger CR, Chan DW . Challenges and opportunities in the proteomic characterization of clear cell renal cell carcinoma (ccRCC): a critical step towards the personalized care of renal cancers. Semin Cancer Biol, 2018, DOI: 10.1016/j.semcancer.2018.06.004. | | [15] | Smith CC, Beckermann KE ,Bortone DS, de Cubas AA, Bixby LM, L |
| [1] |
张宗旺, 熊敬维. AARS1/2:从蛋白质翻译到代谢与免疫调控的双重功能[J]. 遗传, 2025, 47(9): 967-978. |
| [2] |
安梦婷, 郭冠麟, 吴杰, 孙文靖, 贾学渊. 基于生物信息学分析胃癌双微体中增强子的调控机制[J]. 遗传, 2025, 47(5): 558-572. |
| [3] |
刘灿, 翟巍巍, 吕雪梅. 肿瘤演化过程中的进化生态:概念、应用与创新[J]. 遗传, 2025, 47(2): 228-236. |
| [4] |
张宏博, 孙凤桂, 孙建伟, 汤琦, 张旭. 乳腺肿瘤干细胞在乳腺癌发生、发展及耐药中的作用[J]. 遗传, 2025, 47(10): 1099-1117. |
| [5] |
王陈颖, 肖荟尹, 诸志鹏, 郑素雅, 徐良, 陈烨. 子宫平滑肌肉瘤的分子遗传学特征与研究进展[J]. 遗传, 2024, 46(8): 603-626. |
| [6] |
张译文, 黄琴, 吴艳芸, 孙月, 韦永龙. LIN28A/B在肿瘤发生发展中的作用研究进展[J]. 遗传, 2024, 46(6): 452-465. |
| [7] |
沈院, 李金涛, 尹淼, 雷群英. 支链氨基酸代谢在肿瘤发生发展中的作用[J]. 遗传, 2024, 46(6): 438-451. |
| [8] |
李卉, 吴光明. 肿瘤抑制蛋白PDCD4结构特性与疾病关系解析及研究进展[J]. 遗传, 2024, 46(4): 290-305. |
| [9] |
闫旭, 郭影, 孙冬琳, 吴楠, 金焰. 肿瘤抗血管生成治疗耐药机制[J]. 遗传, 2024, 46(11): 911-919. |
| [10] |
孙清玙, 周阳, 杜丽娟, 张梦珂, 王家乐, 任媛媛, 刘芳. 巨噬细胞相关基因与非小细胞肺癌预后和肿瘤微环境的分析[J]. 遗传, 2023, 45(8): 684-699. |
| [11] |
严程浩, 白韦钰, 张智猛, 沈俊岭, 王友军, 孙建伟. STIM1在肿瘤发生及转移中的研究进展[J]. 遗传, 2023, 45(5): 395-408. |
| [12] |
马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
| [13] |
常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127. |
| [14] |
郝庆刚, 孙凤桂, 严程浩, 孙建伟. MT1-MMP在肿瘤转移中的研究进展[J]. 遗传, 2022, 44(9): 745-755. |
| [15] |
赵岩, 王晨鑫, 杨天明, 李春爽, 张丽宏, 杜冬妮, 王若曦, 王静, 魏民, 巴雪青. DNA氧化损伤8-羟鸟嘌呤与肿瘤的发生发展[J]. 遗传, 2022, 44(6): 466-477. |
|