遗传 ›› 2020, Vol. 42 ›› Issue (6): 524-535.doi: 10.16288/j.yczz.19-309
钟亚楠, 牛长敏, 夏蒙蒙, 郑英
收稿日期:
2019-12-25
修回日期:
2020-04-02
出版日期:
2020-06-20
发布日期:
2020-05-07
作者简介:
钟亚楠,在读硕士研究生,专业方向:生殖医学。E-mail: 415833840@qq.com
基金资助:
Yanan Zhong, Changmin Niu, Mengmeng Xia, Ying Zheng
Received:
2019-12-25
Revised:
2020-04-02
Online:
2020-06-20
Published:
2020-05-07
Supported by:
摘要:
精子尾部结构与其运动功能密切相关。精子的运动能力直接决定了精子能否正常运输到输卵管与卵子受精。精子尾部的形成和发育是一个极其复杂的过程,由多种蛋白质精细调控。研究发现,多种精子尾部发育相关蛋白的缺陷可导致少、弱、畸形精子症。本文根据精子尾部的超微结构顺序,对近年来精子尾部发育相关蛋白的研究进展进行综述,以期为男性不育症的遗传学诊断和治疗提供理论基础和实践的可能。
钟亚楠, 牛长敏, 夏蒙蒙, 郑英. 精子尾部发育相关蛋白研究进展[J]. 遗传, 2020, 42(6): 524-535.
Yanan Zhong, Changmin Niu, Mengmeng Xia, Ying Zheng. Research progress of proteins related to sperm tail development[J]. Hereditas(Beijing), 2020, 42(6): 524-535.
表1
精子尾部发育相关蛋白"
精子尾部结构 | 发育相关蛋白 |
---|---|
植入窝和基底板 | SUN5和OAZ3 |
小头和节柱 | SPATA6 |
中心体 | SPATC1L、CEP135、CFAP43和CFAP44 |
Manchette | STK33、KIF3A、LRGUK1、SEPT12和MEIG1 |
轴丝 | CFAP69、SPEF2、ARMC2、TCTE1、RSPH6A、DNAH1、DNAH2、C11orf70和PIH1D3 |
外周致密纤维 | ODF1、ODF2、ODF3、Tssk4和MNS1 |
线粒体鞘 | KLC3、MFN2和CFAP251 |
纤维鞘 | FSIP2、AKAP4、AKAP3、ROPN1、ROPN1L、FS39、Als2cr12、Mtsga10、ENO4和CFAP157 |
[1] | Eddy EM . The scaffold role of the fibrous sheath. Soc Reprod Fertil Suppl, 2007,65:45-62. |
[2] | Toure A, Rode B, Hunnicutt GR, Escalier D, Gacon G . Septins at the annulus of mammalian sperm. Biol Chem, 2011,392(8-9):799-803. |
[3] | Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H . The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell, 2005,8(3):353-364. |
[4] | Lin YH, Lin YM, Wang YY, Yu IS, Lin YW, Wang YH, Wu CM, Pan HA, Chao SC, Yen PH, Lin SW, Kuo PL . The expression level of septin12 is critical for spermiogenesis. Am J Pathol, 2009,174(5):1857-1868. |
[5] | Yassine S, Escoffier J, Abi Nahed R, Pierre V, Karaouzene T, Ray PF, Arnoult C . Dynamics of Sun5 localization during spermatogenesis in wild type and Dpy19l2 knock-out mice indicates that Sun5 is not involved in acrosome attachment to the nuclear envelope. PLoS One, 2015,10(3):e0118698. |
[6] | Shang YL, Zhu FX, Wang LN, Ouyang YC, Dong MZ, Liu C, Zhao HC, Cui XH, Ma DY, Zhang ZG, Yang XY, Guo YS, Liu F, Yuan L, Gao F, Guo XJ, Sun QY, Cao YX, Li W . Essential role for SUN5 in anchoring sperm head to the tail. eLife, 2017,6:e28199. |
[7] | Tokuhiro K, Isotani A, Yokota S, Yano Y, Oshio S, Hirose M, Wada M, Fujita K, Ogawa Y, Okabe M, Nishimune Y, Tanaka H . OAZ-t/OAZ3 is essential for rigid connection of sperm tails to heads in mouse. PLoS Genet, 2009,5(11):e1000712. |
[8] | Yuan SQ, Stratton CJ, Bao JQ, Zheng HL, Bhetwal BP, Yanagimachi R, Yan W . Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc Natl Acad Sci USA, 2015,112(5):E430-E439. |
[9] | Baek N, Woo JM, Han C, Choi E, Park I, Kim DH, Eddy EM, Cho C . Characterization of eight novel proteins with male germ cell-specific expression in mouse. Reprod Biol Endocrinol, 2008,6:32. |
[10] | Kim J, Kwon JT, Jeong J, Kim J, Hong SH, Kim J, Park ZY, Chung KH, Eddy EM, Cho C . SPATC1L maintains the integrity of the sperm head-tail junction. EMBO Rep, 2018,19(9):e45991. |
[11] | Hussain MS, Baig SM, Neumann S, Nurnberg G, Farooq M, Ahmad I, Alef T, Hennies HC, Technau M, Altmuller J, Frommolt P, Thiele H, Noegel AA, Nurnberg P . A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am J Hum Genet, 2012,90(5):871-878. |
[12] | Sha YW, Xu XH, Mei LB, Li P, Su ZY, He XQ, Li L . A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF). Gene, 2017,633:48-53. |
[13] | Sha YW, Wang X, Xu X, Su ZY, Cui Y, Mei LB, Huang XJ, Chen J, He XM, Ji ZY, Bao H, Yang X, Li P, Li L . Novel mutations in CFAP44 and CFAP43 cause multiple morphological abnormalities of the sperm flagella (MMAF). Reprod Sci, 2019,26(1):26-34. |
[14] | Lehti MS, Sironen A . Formation and function of the manchette and flagellum during spermatogenesis. Reproduction, 2016,151(4):R43-R54. |
[15] | Martins LR, Bung RK, Koch S, Richter K, Schwarzmüller L, Terhardt D, Kurtulmus B, Niehrs C, Rouhi A, Lohmann I, Pereira G, Frohling S, Glimm H, Scholl C . Stk33 is required for spermatid differentiation and male fertility in mice. Dev Biol, 2018,433(1):84-93. |
[16] | Rosenbaum JL, Witman GB . Intraflagellar transport. Nat Rev Mol Cell Biol, 2002,3(11):813-25. |
[17] | Lehti MS, Kotaja N, Sironen A . KIF3A is essential for sperm tail formation and manchette function. Mol Cell Endocrinol, 2013,377(1-2):44-55. |
[18] | Okuda H, DeBoer K, O'Connor AE, Merriner DJ, Jamsai D, O'Bryan MK. LRGUK1 is part of a multiprotein complex required for manchette function and male fertility. FASEB J, 2017,31(3):1141-1152. |
[19] | Kuo PL, Chiang HS, Wang YY, Kuo YC, Chen MF, Yu IS, Teng YN, Lin SW, Lin YH . SEPT12-microtubule complexes are required for sperm head and tail formation. Int J Mol Sci, 2013,14(11):22102-22116. |
[20] | Zhang Z, Shen X, Gude DR, Wilkinson BM, Justice MJ, Flickinger CJ, Herr JC, Eddy EM, Strauss JF . MEIG1 is essential for spermiogenesis in mice. Proc Natl Acad Sci USA, 2009,106(40):17055-17060. |
[21] | Dong FN, Amiri-Yekta A, Martinez G, Saut A, Tek J, Stouvenel L, Lores P, Karaouzene T, Thierry-Mieg N, Satre V, Brouillet S, Daneshipour A, Hosseini SH, Bonhivers M, Gourabi H, Dulioust E, Arnoult C, Toure A, Ray PF, Zhao H, Coutton C . Absence of CFAP69 causes male infertility due to multiple morphological abnormalities of the flagella in human and mouse. Am J Hum Genet, 2018,102(4):636-648. |
[22] | Liu CY, Lv MR, He XJ, Zhu Y, Amiri-Yekta A, Li WY, Wu H, Kherraf ZE, Liu WJ, Zhang JJ, Tan Q, Tang SY, Zhu YJ, Zhong YD, Li CH, Tian SX, Zhang ZG, Jin L, Ray P, Zhang F, Cao YX . Homozygous mutations in SPEF2 induce multiple morphological abnormalities of the sperm flagella and male infertility. J Med Genet, 2020,57(1):31-37. |
[23] | Sironen A, Hansen J, Thomsen B, Andersson M, Vilkki J, Toppari J, Kotaja N . Expression of SPEF2 during mouse spermatogenesis and identification of IFT20 as an interacting protein. Biol Reprod, 2010,82(3):580-590. |
[24] | Coutton C, Martinez G, Kherraf ZE, Amiri-Yekta A, Boguenet M, Saut A, He X, Zhang F, Cristou-Kent M, Escoffier J, Bidart M, Satre V, Conne B, Fourati Ben Mustapha S, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Pernet-Gallay K, Bonhivers M, Hennebicq S, Rives N, Dulioust E, Toure A, Gourabi H, Cao Y, Zouari R, Hosseini SH, Nef S, Thierry-Mieg N, Arnoult C, Ray PF . Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am J Hum Genet, 2019,104(2):331-340. |
[25] | Teves ME, Nagarkatti-Gude DR, Zhang Z, Strauss JF . Mammalian axoneme central pair complex proteins: Broader roles revealed by gene knockout phenotypes. Cytoskeleton (Hoboken), 2016,73(1):3-22. |
[26] | Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME . The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell, 2013,24(8):1134-1152. |
[27] | Castaneda JM, Hua R, Miyata H, Oji A, Guo YS, Cheng YW, Zhou T, Guo XJ, Cui YQ, Shen B, Wang ZB, Hu ZB, Zhou ZM, Sha JH, Prunskaite-Hyyrylainen R, Yu ZF, Ramirez-Solis R, Ikawa M, Matzuk MM, Liu MX . TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci USA, 2017,114(27):E5370-E5378. |
[28] | Abbasi F, Miyata H, Shimada K, Morohoshi A, Nozawa K, Matsumura T, Xu Z, Pratiwi P, Ikawa M . RSPH6A is required for sperm flagellum formation and male fertility in mice. J Cell Sci, 2018,131(19). |
[29] | Kott E, Legendre M, Copin B, Papon JF, Dastot-Le Moal F, Montantin G, Duquesnoy P, Piterboth W, Amram D, Bassinet L, Beucher J, Beydon N, Deneuville E, Houdouin V, Journel H, Just J, Nathan N, Tamalet A, Collot N, Jeanson L, Le Gouez M, Vallette B, Vojtek AM, Epaud R, Coste A, Clement A, Housset B, Louis B, Escudier E, Amselem S. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial- spoke defects. Am J Hum Genet, 2013,93(3):561-570. |
[30] | Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, Yassine S, Pierre V, Delaroche J, Hennebicq S, Grunwald D, Escalier D, Pernet-Gallay K, Jouk PS, Thierry-Mieg N, Touré A, Arnoult C, Ray PF . Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet, 2014,94(1):95-104. |
[31] | Li Y, Sha YW, Wang X, Ding L, Liu WS, Ji ZY, Mei LB, Huang XJ, Lin SB, Kong SB, Lu JH, Qin WB, Zhang XZ, Zhuang JM, Tang YG, Lu ZX . DNAH2 is a novel candidate gene associated with multiple morphological abnormalities of the sperm flagella. Clin Genet, 2019,95(5):590-600. |
[32] | Höben IM, Hjeij R, Olbrich H, Dougherty GW, Nothe- Menchen T, Aprea I, Frank D, Pennekamp P, Dworniczak B, Wallmeier J, Raidt J, Nielsen KG, Philipsen MC, Santamaria F, Venditto L, Amirav I, Mussaffi H, Prenzel F, Wu K, Bakey Z, Schmidts M, Loges NT, Omran H . Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of Left/Right body asymmetry due to defects of outer and inner dynein arms. Am J Hum Genet, 2018,102(5):973-984. |
[33] | Dong F, Shinohara K, Botilde Y, Nabeshima R, Asai Y, Fukumoto A, Hasegawa T, Matsuo M, Takeda H, Shiratori H, Nakamura T, Hamada H . Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm. J Cell Biol, 2014,204(2):203-213. |
[34] | Gastmann O, Burfeind P, Günther E, Hameister H, Szpirer C, Hoyer-Fender S . Sequence, expression, and chromosomal assignment of a human sperm outer dense fiber gene. Mol Reprod Dev, 1993,36(4):407-418. |
[35] | Shao X, Murthy S, Demetrick DJ, van der Hoorn FA . Human outer dense fiber gene, ODF2, localizes to chromosome 9q34. Cytogenet Cell Genet, 1998,83(3-4):221-223. |
[36] | Petersen C, Aumüller G, Bahrami M, Hoyer-Fender S . Molecular cloning of Odf3 encoding a novel coiled-coil protein of sperm tail outer dense fibers. Mol Reprod Dev, 2002,61(1):102-112. |
[37] | Wei Y, Wang X, Fu G, Yu L . Testis specific serine/threonine kinase 4 (Tssk4) maintains its kinase activity by phosphorylating itself at Thr-197. Mol Biol Rep, 2013,40(1):439-447. |
[38] | Wang X, Wei Y, Fu G, Li H, Saiyin H, Lin G, Wang Z, Chen S, Yu L . Tssk4 is essential for maintaining the structural integrity of sperm flagellum. Mol Hum Reprod, 2015,21(2):136-145. |
[39] | Zhou J, Yang F, Leu NA, Wang PJ . MNS1 is essential for spermiogenesis and motile ciliary functions in mice. PLoS Genet, 2012,8(3):e1002516. |
[40] | Hirokawa N, Nitta R, Okada Y . The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nat Rev Mol Cell Biol, 2009,10(12):877-884. |
[41] | Zhang Y, Ou Y, Cheng M, Saadi HS, Thundathil JC, van der Hoorn FA, . KLC3 is involved in sperm tail midpiece formation and sperm function. Dev Biol, 2012,366(2):101-110. |
[42] | Bhullar B, Zhang Y, Junco A, Oko R, van der Hoorn FA, . Association of kinesin light chain with outer dense fibers in a microtubule-independent fashion. J Biol Chem, 2003,278(18):16159-16168. |
[43] | Zhang Y, Oko R, van der Hoorn FA . Rat kinesin light chain 3 associates with spermatid mitochondria. Dev Biol, 2004,275(1):23-33. |
[44] | Vadnais ML, Lin AM, Gerton GL . Mitochondrial fusion protein MFN2 interacts with the mitostatin-related protein MNS1 required for mouse sperm flagellar structure and function. Cilia, 2014,3:5. |
[45] | Li WY, He XJ, Yang SM, Liu CY, Wu H, Liu WJ, Lv MR, Tang DD, Tan J, Tang SY, Chen YJ, Wang JJ, Zhang ZG, Wang HY, Jin L, Zhang F, Cao YX . Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility. J Hum Genet, 2019,64(1):49-54. |
[46] | Liu W, Wu H, Wang L, Yang X, Liu C, He X, Li W, Wang J, Chen Y, Wang H, Gao Y, Tang S, Yang S, Jin L, Zhang F, Cao Y . Homozygous loss-of-function mutations in FSIP2 cause male infertility with asthenoteratospermia. J Genet Genomics, 2019,46(1):53-56. |
[47] | Fiedler SE, Dudiki T, Vijayaraghavan S, Carr DW . Loss of R2D2 proteins ROPN1 and ROPN1L causes defects in murine sperm motility, phosphorylation, and fibrous sheath integrity. Biol Reprod, 2013,88(2):41. |
[48] | Newell AE, Fiedler SE, Ruan JM, Pan J, Wang PJ, Deininger J, Corless CL, Carr DW . Protein kinase A RII-like (R2D2) proteins exhibit differential localization and AKAP interaction. Cell Motil Cytoskeleton, 2008,65(7):539-552. |
[49] | Catalano RD, Hillhouse EW, Vlad M . Developmental expression and characterization of FS39, a testis complementary DNA encoding an intermediate filament-related protein of the sperm fibrous sheath. Biol Reprod, 2001,65(1):277-287. |
[50] | Choi E, Cho C . Expression of a sperm flagellum component encoded by the Als2cr12 gene. Gene Expr Patterns, 2011,11(5-6):327-333. |
[51] | Modarressi MH, Behnam B, Cheng M, Taylor KE, Wolfe J, van der Hoorn FA . Tsga10 encodes a 65-kilodalton protein that is processed to the 27-kilodalton fibrous sheath protein. Biol Reprod, 2004,70(3):608-615. |
[52] | Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T . Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J, 2000,19(17):4449-4462. |
[53] | Nakamura N, Dai QS, Williams J, Goulding EH, Willis WD, Brown PR, Eddy EM . Disruption of a spermatogenic cell-specific mouse enolase 4 (eno4) gene causes sperm structural defects and male infertility. Biol Reprod, 2013,88(4):90. |
[54] | Hoppeler-Lebel A, Celati C, Bellett G, Mogensen MM, Klein-Hitpass L, Bornens M, Tassin AM . Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J Cell Sci, 2007,120(Pt 18):3299-3308. |
[55] | Weidemann M, Schuster-Gossler K, Stauber M, Wrede C, Hegermann J, Ott T, Boldt K, Beyer T, Serth K, Kremmer E, Blum M, Ueffing M, Gossler A . CFAP157 is a murine downstream effector of FOXJ1 that is specifically required for flagellum morphogenesis and sperm motility. Development, 2016,143(24):4736-4748. |
[56] | Krausz C, Escamilla AR, Chianese C . Genetics of male infertility: from research to clinic. Reproduction, 2015,150(5):R159-R174. |
[57] | Ruan J, Du WD . Male infertility and gene defects. Hereditas(Beijing), 2010,32(5):411-422. |
阮健, 杜卫东 . 男性不育与基因缺陷. 遗传, 2010,32(5):411-422. |
[1] | 田璐妍, 黄小珍. 植物开花调控中蛋白质相分离机制在从头驯化中的应用价值[J]. 遗传, 2023, 45(9): 754-764. |
[2] | 孔维泽, 柳艺石, 高晓冬, 藤田盛久. 数据驱动的人体正常和癌症组织中糖基磷脂酰肌醇锚定蛋白(GPI-AP)相关基因表达谱的综合分析[J]. 遗传, 2023, 45(8): 669-683. |
[3] | 时文睿, 渠鸿竹, 方向东. 痛风的多组学研究进展[J]. 遗传, 2023, 45(8): 643-657. |
[4] | 金良, 陈语婕, 陈勇军. 发育性和癫痫性脑病遗传学病因及诊疗的研究进展[J]. 遗传, 2023, 45(7): 553-567. |
[5] | 何山, 赵健, 宋晓峰. N6-甲基腺苷修饰对女性生殖系统功能的影响[J]. 遗传, 2023, 45(6): 472-487. |
[6] | 李菲菲, 郝燕敏, 崔敏龙, 朴春兰. 金鱼草RADIALIS-like 1基因克隆与功能研究[J]. 遗传, 2023, 45(6): 526-535. |
[7] | 邢超凡, 王闽涛, 王磊, 申欣. 两侧对称动物左右不对称发生机制研究进展[J]. 遗传, 2023, 45(6): 488-500. |
[8] | 高智慧, 黄佳新, 罗昊玉, 徐海冬, 娄明, 宁博林, 邢晓旭, 牟芳, 李辉, 王宁. 鸡NRG4基因组及转录本结构分析[J]. 遗传, 2023, 45(5): 447-458. |
[9] | 王文龙, 张春霞. 哺乳动物卵子与早期胚胎中全转录组poly(A)尾研究进展[J]. 遗传, 2023, 45(4): 273-278. |
[10] | 马春辉, 胡海旭, 张丽娟, 刘毅, 刘天懿. 用于循环肿瘤细胞定量分析的CK19数字PCR检测方法的建立及性能验证[J]. 遗传, 2023, 45(3): 250-260. |
[11] | 王承贤, 容益康, 崔敏. 果蝇限制端粒转座子的分子机制[J]. 遗传, 2023, 45(3): 221-228. |
[12] | 商晓康, 张思萌, 倪军军. 组织蛋白酶B参与脑衰老及阿尔兹海默症发生发展研究进展[J]. 遗传, 2023, 45(3): 212-220. |
[13] | 张茜, 王子豪, 田烨. 跨组织线粒体应激信号交流调控机体衰老研究进展[J]. 遗传, 2023, 45(3): 187-197. |
[14] | 常栋, 刘享享, 刘睿, 孙建伟. FSCN1在乳腺癌发生发展中的作用及其调控机制[J]. 遗传, 2023, 45(2): 115-127. |
[15] | 吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: