遗传 ›› 2021, Vol. 43 ›› Issue (2): 142-159.doi: 10.16288/j.yczz.20-301
李金玉1,2,3(), 杨姗2,3, 崔玉军2,3, 王涛1, 滕越2,3()
收稿日期:
2020-11-23
出版日期:
2021-02-16
发布日期:
2021-01-27
基金资助:
Jinyu Li1,2,3(), Shan Yang2,3, Yujun Cui2,3, Tao Wang1, Yue Teng2,3()
Received:
2020-11-23
Online:
2021-02-16
Published:
2021-01-27
Supported by:
摘要:
具有最小基因组的细菌只包含维持自我生命复制所必需的基因,其作为一种潜在的工业生产平台具有诸多优势。由于高通量DNA测序和合成技术的发展,目前已经构建了多种缩减基因组的菌株。本文首先介绍了最小基因组的概念,其次总结了细菌必需基因的相关研究进展,然后梳理了人工缩减与合成微生物基因组的相关工作,最后探讨了在设计和组装基因组的过程中遇到的技术障碍和限制,以期为人工合成基因组的实验与应用提供理论参考。
李金玉, 杨姗, 崔玉军, 王涛, 滕越. 细菌最小基因组研究进展[J]. 遗传, 2021, 43(2): 142-159.
Jinyu Li, Shan Yang, Yujun Cui, Tao Wang, Yue Teng.
表1
具有代表性的细菌、共生生物、病毒和细胞器基因组的比较"
微生物 | 分类a | 基因组 大小(bp) | GC含 量(%) | 蛋白质 编码 序列数 | 位于COGs M簇和I簇 的基因数目b | 细胞形态 | 杆状决定基因 | |||
---|---|---|---|---|---|---|---|---|---|---|
ftsZ | ispA | mreB | rodA | |||||||
游离细菌 | ||||||||||
Escherichia coli | γ-变形菌纲 | 4,639,675 | 50.8 | 4145 | 323 | 杆状[ | + | + | + | + |
Bacillus subtilis | 柔膜菌纲 | 4,215,606 | 43.5 | 4176 | 307 | 杆状[ | + | + | + | + |
Rickettsia prowazekii | α-变形菌纲 | 1,111,523 | 29.0 | 835 | 100 | 杆状[ | + | - | + | + |
Mycobacterium genitalium | Mollicutes | 580,076 | 31.7 | 475 | 17 | '烧瓶形' [ | + | - | - | - |
缩减基因组共生生物 | ||||||||||
Candidatus Blochmannia floridanus | γ-变形菌纲 | 705,557 | 27.4 | 583 | 77 | 杆状[ | + | - | + | + |
Wigglesworthia glossinidia | γ-变形菌纲 | 697,724 | 22.5 | 611 | 85 | 杆状[ | + | + | + | + |
Candidatus Baumannia cicadellinicola | γ-变形菌纲 | 686,194 | 33.2 | 595 | 62 | 球状[ | + | + | + | + |
Buchnera aphidicola str. APS | γ-变形菌纲 | 640,681 | 26.3 | 564 | 41 | 球状[ | + | + | - | - |
Candidatus Moranella endobia' | γ-变形菌纲 | 538,294 | 43.5 | 406 | 36 | 球状[ | + | - | + | + |
Buchnera aphidicola str. Cc | γ-变形菌纲 | 416,380 | 20.2 | 357 | 10 | 球状[ | + | - | - | - |
极端缩减基因组共生生物 | ||||||||||
Candidatus Sulcia muelleri str. GWSS | 黄杆菌纲 | 245,530 | 22.4 | 227 | 5 | 多形性管状[ | - | - | - | - |
Candidatus Zinderia insecticola | β-变形菌纲 | 208,564 | 13.5 | 202 | 1 | 多形性斑点[ | - | - | - | - |
Candidatus Carsonella ruddii | γ-变形菌纲 | 159,662 | 16.6 | 182 | 1 | 多形性管状[ | - | - | - | - |
Candidatus Hodgkinia cicadicola | α-变形菌纲 | 143,795 | 58.4 | 169 | 0 | 多形性管状[ | - | - | - | - |
Candidatus Tremblaya princeps | β-变形菌纲 | 138,927 | 58.8 | 121 | 0 | 多形性斑点[ | - | - | - | - |
具有较大基因组的细胞器 | ||||||||||
Cucurbita pepo | 线粒体 | 982,833 | 42.8 | 38 | NA | NA | - | - | - | - |
Floydiella terrestris | 叶绿体 | 521,168 | 34.5 | 74 | NA | NA | - | - | - | - |
Porphyra purpurea | 叶绿体 | 191,028 | 33.0 | 209 | NA | NA | - | - | - | - |
Reclinomonas americana | 线粒体 | 69,034 | 26.1 | 67 | NA | NA | - | - | - | - |
巨大病毒 | ||||||||||
Acanthamoeba polyphaga mimivirus | 拟菌病毒科 | 1,181,404 | 28.0 | 1262 | NA | NA | NA | NA | NA | NA |
Cafeteria roenbergensis virus (CroV) | 拟菌病毒科 | 617,453 | 23.4 | 544 | NA | NA | NA | NA | NA | NA |
Coccolithovirus | 藻类DNA 病毒科 | 407,339 | 40.2 | 472 | NA | NA | NA | NA | NA | NA |
表2
缩减基因组大肠杆菌及其特征"
原始菌株 | 缩减基因组菌株名称 | 原始基因组大小(Mb) | 缩减量(%) | 特征 |
---|---|---|---|---|
Escherichia coli str. K-12 substr. MG1655 | CDΔ3456 | 4.64 | 313 kb (6.8) | 生长速度正常 |
Escherichia coli str. K-12 substr. MG1655 | MDS12 | 4.64 | 376 kb (8.1) | 生长速度正常,细菌生长密度提高10% |
Escherichia coli str. K-12 substr. MG1655 | MDS42 | 4.64 | 708 kb (15.3) | 生长速度正常,更高的转化效率 |
Escherichia coli str. K-12 substr. MG1655 | MS56 | 4.64 | 1068 kb (23.0) | 生长速度正常,遗传稳定性提高 |
Escherichia coli str. K-12 substr. MG1655 | Δ16 | 4.64 | 1377 kb (29.7) | 较低的生长速度,异常的拟核结构 |
Escherichia coli str. K-12 substr. W3110 | MGF-01 | 4.65 | 1030 kb (22.2) | 细菌生长密度提高50%,更高的苏氨酸产量 |
Bacillus subtilis str. 168 | Δ6 | 4.22 | 320 kb (7.7) | 生长速度正常 |
Bacillus subtilis str. 168 | PG10 | 4.22 | 1456 kb (34.5) | 较低的生长速度 |
Bacillus subtilis str. 168 | PG38 | 4.22 | 1535 kb (36.4) | 较低的生长速度 |
Bacillus subtilis str. 168 | MGB469 | 4.22 | 469 kb (11.1) | 生长速度正常 |
Bacillus subtilis str. 168 | MG1M | 4.22 | 991 kb (23.5) | 生长速度正常 |
Bacillus subtilis str. 168 | MBG874 | 4.22 | 874 kb (20.7) | 较低的生长速度,更高的蛋白产量 |
Streptomyces avermitilis | SUKA17 | 9.03 | 1674 kb (18.5) | 更高的抗生素产量 |
Schizosaccharomyces pombe | A8 | 12.6 | 657 kb (5.2) | 更高的蛋白产量 |
[1] |
Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci , 2012, 13(5): 336-349.
doi: 10.1038/nrn3214 pmid: 22498897 |
[2] | Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex , 1991, 1(1): 1-47. |
[3] | Cox DD, Dean T. Neural networks and neuroscience- inspired computer vision. Curr Biol , 2014, 24(18): R921-R929. |
[4] | Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Neural Inf Proc Sys , 2017, 60(6): 84-90. |
[5] | Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Networks , 1997, 10(9): 1659-1671. |
[6] | Mcculloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biol , 1990, 52( 1-2): 99-115. |
[7] | Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines vinod nair.. Proceedings of the 27th International Conference on Machine Learning, 2010, 807-814. |
[8] | Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature , 1986, 323(6088): 533-536. |
[9] | Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw , 2003, 14(6): 1569-1572. |
[10] | McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol , 2011, 10(1): 13-26. |
[11] | Moran NA. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA , 1996, 93(7): 2873-2878. |
[12] |
Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends Genet , 2001, 17(10): 589-596.
doi: 10.1016/s0168-9525(01)02447-7 pmid: 11585665 |
[13] | Nilsson AI, Koskiniemi S, Eriksson S, Kugelberg E, Hinton JCD, Andersson DI. Bacterial genome size reduction by experimental evolution. Proc Natl Acad Sci USA , 2005, 102(34): 12112-12116. |
[14] | Hebb DO. The Organization of behavior: a neuropsychological theory. John Wiley, Chapman & Hall, 2013. |
[15] |
Mccutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol , 2011, 10(1): 13-26.
doi: 10.1038/nrmicro2670 pmid: 22064560 |
[16] | Moran NA, Mira A. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol , 2001, 2(12): h51-h54. |
[17] |
Bennett GM, Moran NA. smaller smaller, Small, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol , 2013, 5(9): 1675-1688.
doi: 10.1093/gbe/evt118 pmid: 23918810 |
[18] |
Mao C, Labean TH, Relf JH, Seeman NC. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature , 2000, 407(6803): 493-496.
pmid: 11028996 |
[19] |
Seelig G, Soloveichik D, Zhang DY, Winfree E. Enzyme-free nucleic acid logic circuits. Science , 2006, 314(5805): 1585-1588.
doi: 10.1126/science.1132493 pmid: 17158324 |
[20] | Zhang BT, Jang H. Molecular programming: evolving genetic programs in a test tube. Genet Evol Comput Conf , 2005, 1761-1768. |
[21] | Zhang BT, Kim JK. DNA hypernetworks for information storage and retrieval[C]. 12th International Meeting on DNA Computing, 2006, 298-307. |
[22] | Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E. Programmable and autonomous computing machine made of biomolecules. Nature , 2001, 414(6862): 430-434. |
[23] | Yurke B, Turberfield AJ, Mills Jr AP, Simmel FC, Neumann JL. A DNA-fuelled molecular machine made of DNA. Nature , 2000, 406(6796): 605-608. |
[24] | Stojanovic MN, Stefanovic D. A deoxyribozyme-based molecular automaton. Nat Biotechnol , 2003, 21(9): 1069-1074. |
[25] | Pei RJ, Matamoros E, Liu MH, Stefanovic D, Stojanovic MN. Training a molecular automaton to play a game. Nat Nanotechnol , 2010, 5(11): 773-777. |
[26] |
Katz E, Privman V. Enzyme-based logic systems for information processing. Chem Soc Rev , 2010, 39(5): 1835-1857.
pmid: 20419221 |
[27] |
Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci , 2000, 3 Suppl.: 1178-1183.
pmid: 11127835 |
[28] | Lichtsteiner P, Posch C, Delbruck T. A 128× 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J Solid-St Circ , 2008, 43(2): 566-576. |
[29] |
Liu SC, Delbruck T. Neuromorphic sensory systems. Curr Opin Neurobiol , 2010, 20(3): 288-295.
pmid: 20493680 |
[30] | Maher MAC, Deweerth SP, Mahowald MA, Mead CA. Implementing neural architectures using analog vlsi circuits. IEEE T Circ Syst , 1989, 36: 643-652. |
[31] | Mead C. Neuromorphic electronic systems. P Ieee , 1990, 78(10): 1629-1636. |
[32] | Mead CA. Neural hardware for vision. Eng Sci , 1987, 50( 5). |
[33] | Huang YY, He L. DNA computing research progress and application. 2011 6th International Conference on Computer Science & Education (ICCSE), 2011, 232-235. |
[34] | Seeman NC. DNA in a material world. Nature , 2003, 421(6921): 427-431. |
[35] | Steele G, Stojkovic V. Agent-oriented approach to DNA computing. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. |
[36] | Greengard S. Cracking the code on DNA storage. Commun ACM , 2017, 60(7): 16-18. |
[37] | Heckel R, Shomorony I, Ramchandran K, Tse DNC. Fundamental limits of DNA storage systems. 2017. |
[38] |
Ghatak S, King ZA, Sastry A, Palsson BO. The y-ome defines the 35% of Escherichia coli genes that lack experimental evidence of function. Nucleic Acids Res , 2019, 47(5): 2446-2454.
pmid: 30698741 |
[39] |
Riley M, Abe T, Arnaud MB, Berlyn MKB, Blattner FR, Chaudhuri RR, Glasner JD, Horiuchi T, Keseler IM, Kosuge T, Mori H, Perna NT, Plunkett G, Rudd KE, Serres MH, Thomas GH, Thomson NR, Wishart D, Wanner BL. Escherichia coli K-12: a cooperatively developed annotation snapshot--2005. Nucleic Acids Res , 2006, 34(1): 1-9.
pmid: 16397293 |
[40] |
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol , 2006, 2: 2006. 0008.
pmid: 16738554 |
[41] |
Moya A, Gil R, Latorre A, Peretó J, Garcillán-Barcia MP, de la Cruz F. Toward minimal bacterial cells: evolution vs. design. FEMS Microbiol Rev , 2009, 33(1): 225-235.
doi: 10.1111/j.1574-6976.2008.00151.x pmid: 19067748 |
[42] |
Williams KP, Sobral BW, Dickerman AW. A robust species tree for the Alphaproteobacteria. J Bacteriol , 2007, 189(13): 4578-4586.
pmid: 17483224 |
[43] | Gray MW. Mitochondrial evolution. Cold Spring Harb Perspect Biol , 2012, 4(9): a11403. |
[44] | Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SGE. Computational inference of scenarios for α-proteobacterial genome evolution. Proc Natl Acad Sci USA , 2004, 101(26): 9722-9727. |
[45] |
Mizoguchi H, Sawano Y, Kato JI, Mori H. Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome . DNA Res , 2008, 15(5): 277-284.
doi: 10.1093/dnares/dsn019 pmid: 18753290 |
[46] | Stewart GC. Taking shape: control of bacterial cell wall biosynthesis. Mol Microbiol , 2005, 57(5): 1177-1181. |
[47] |
Silverman DJ, Wisseman Jr CL, Waddell A. In vitro studies of Rickettsia-host cell interactions: ultrastructural study of Rickettsia prowazekii-infected chicken embryo fibroblasts . Infect Immun , 1980, 29(2): 778-790.
pmid: 6783534 |
[48] |
Tully JG, Taylor-Robinson D, Cole RM, Rose DL. A newly discovered mycoplasma in the human urogenital tract. Lancet , 1981, 1(8233): 1288-1291.
pmid: 6112607 |
[49] |
Schröder D, Deppisch H, Obermayer M, Krohne G, Stackebrandt E, Hölldobler B, Goebel W, Gross R. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol , 1996, 21(3): 479-489.
pmid: 8866472 |
[50] |
Aksoy S. Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., Taxa consisting of the mycetocyte- associated, primary endosymbionts of tsetse flies. Int J Syst Bacteriol , 1995, 45(4): 848-851.
pmid: 7547309 |
[51] |
Moran NA, Dale C, Dunbar H, Smith WA, Ochman H. Intracellular symbionts of sharpshooters (insecta: hemiptera: cicadellinae) form a distinct clade with a small genome. Environ Microbiol , 2003, 5(2): 116-126.
pmid: 12558594 |
[52] | Griffiths GW, Beck SD. Effects of antibiotics on intracellular symbiotes in the pea aphid, Acyrthosiphon pisum. Cell Tissue Res , 1974, 148(3): 287-300. |
[53] | von Dohlen CD, Kohler S, Alsop ST, McManus WR. Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature , 2001, 412(6845): 433-436. |
[54] | Kopylova NV, Mikhaĭlova ZM, Fokina TV, Rybakova EP. Dynamics of the humoral immunity indices in children with phenylketonuria against a background of diet therapy and after its discontinuance. Vopr Pitan , 1979, (6): 57-59. |
[55] | Oike M, Kitamura K, Kuriyama H. Histamine H3-receptor activation augments voltage-dependent Ca 2+ current via GTP hydrolysis in rabbit saphenous artery . J Physiol , 1992, 448: 133-152. |
[56] |
Zarrin F, Bornhop DJ, Dovichi NJ. Laser Doppler velocimetry for particle size determination by light scatter within the sheath flow cuvette. Anal Chem , 1987, 59(6): 854-860.
doi: 10.1021/ac00133a015 pmid: 2953269 |
[57] | Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar H E, Moran NA, Hattori M. The 160-Kilobase genome of the bacterial endosymbiont carsonella. Science , 2006, 314(5797): 267. |
[58] | Ashby J. SCE induction by CCNU and pregnancy. Mutat Res , 1989, 222(4): 299. |
[59] | Mushegian AR, Koonin EV. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA , 1996, 93(19): 10268-10273. |
[60] | Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ. Universal trees based on large combined protein sequence data sets. Nat Genet , 2001, 28(3): 281-285. |
[61] |
Harris JK, Kelley ST, Spiegelman GB, Pace NR. The genetic core of the universal ancestor. Genome Res , 2003, 13(3): 407-412.
pmid: 12618371 |
[62] |
Koonin EV. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol , 2003, 1(2): 127-136.
pmid: 15035042 |
[63] |
Charlebois RL, Doolittle WF. Computing prokaryotic gene ubiquity: rescuing the core from extinction. Genome Res , 2004, 14(12): 2469-2477.
doi: 10.1101/gr.3024704 pmid: 15574825 |
[64] | Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC. Global transposon mutagenesis and a minimal Mycoplasma genome. Science , 1999, 286(5447): 2165-2169. |
[65] |
Itaya M. An estimation of minimal genome size required for life. FEBS Lett , 1995, 362(3): 257-260.
doi: 10.1016/0014-5793(95)00233-y pmid: 7729508 |
[66] | Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Débarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauël C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O'Reilly M, O'Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JFML, Sekiguchi J, Sekowska A, Séror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N. Essential Bacillus subtilis genes. Proc Natl Acad Sci USA , 2003, 100(8): 4678-4683. |
[67] | Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol , 2006, 2: 2006. 0008. |
[68] | Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, Smith HO, Venter JC. Essential genes of a minimal bacterium. Proc Natl Acad Sci USA , 2006, 103(2): 425-430. |
[69] | Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC. Global transposon mutagenesis and a minimal Mycoplasma genome. Science , 1999, 286(5447): 2165-2169. |
[70] |
Ji Y, Zhang B, Van SF, Warren HP, Woodnutt G, Burnham MK, Rosenberg M. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science , 2001, 293(5538): 2266-2269.
pmid: 11567142 |
[71] |
Gerdes SY, Scholle MD, Campbell JW, Balázsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D'Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabási AL, Oltvai ZN, Osterman AL. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655 . J Bacteriol , 2003, 185(19): 5673-5684.
doi: 10.1128/jb.185.19.5673-5684.2003 pmid: 13129938 |
[72] |
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell , 2013, 152(5): 1173-1183.
doi: 10.1016/j.cell.2013.02.022 |
[73] |
Rousset F, Cui L, Siouve E, Becavin C, Depardieu F, Bikard D, Blokesch M. Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLoS Genet , 2018, 14(11): e1007749.
doi: 10.1371/journal.pgen.1007749 pmid: 30403660 |
[74] |
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science , 2014, 343(6166): 84-87.
doi: 10.1126/science.1247005 pmid: 24336571 |
[75] | Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science , 2014, 343(6166): 80-84. |
[76] |
Yu BJ, Kim C. Minimization of the Escherichia coli genome using the Tn5-targeted Cre/loxP excision system. Methods Mol Biol , 2008, 416: 261-277.
doi: 10.1007/978-1-59745-321-9_17 pmid: 18392973 |
[77] |
Nijman SMB. Synthetic lethality: General principles, utility and detection using genetic screens in human cells. FEBS Lett , 2011, 585(1): 1-6.
doi: 10.1016/j.febslet.2010.11.024 pmid: 21094158 |
[78] |
Kolisnychenko V, Plunkett G, Herring CD, Fehér T, Pósfai J, Blattner FR, Pósfai G. Engineering a reduced Escherichia coli genome . Genome Res , 2015, 12(4): 640-647.
doi: 10.1101/gr.217202 pmid: 11932248 |
[79] |
Pósfai G, Plunkett G, Fehér T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR. Emergent properties of reduced-genome Escherichia coli . Science , 2006, 312(5776): 1044-1046.
pmid: 16645050 |
[80] |
Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC. Metabolic engineering of a reduced- genome strain of Escherichia coli for L-threonine production . Microb Cell Fact , 2009, 8: 2.
doi: 10.1186/1475-2859-8-2 pmid: 19128451 |
[81] |
Park MK, Lee SH, Yang KS, Jung SC, Lee JH, Kim SC. Enhancing recombinant protein production with an Escherichia coli host strain lacking insertion sequences. Appl Microbiol Biotechnol , 2014, 98(15): 6701-6713.
doi: 10.1007/s00253-014-5739-y pmid: 24752842 |
[82] |
Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keyamura K, Ote T, Yamakawa T, Yamazaki Y, Mori H, Katayama T, Kato JI. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome . Mol Microbiol , 2005, 55(1): 137-149.
doi: 10.1111/j.1365-2958.2004.04386.x pmid: 15612923 |
[83] |
Westers H, Dorenbos R, van Dijl JM, Kabel J, Flanagan T, Devine KM, Jude F, Seror SJ, Beekman AC, Darmon E, Eschevins C, de Jong A, Bron S, Kuipers OP, Albertini AM, Antelmann H, Hecker M, Zamboni N, Sauer U, Bruand C, Ehrlich DS, Alonso JC, Salas M, Quax WJ. Genome engineering reveals large dispensable regions in bacillus subtilis. Mol Biol Evol , 2003, 20(12): 2076-2090.
doi: 10.1093/molbev/msg219 pmid: 12949151 |
[84] |
Biswas I, Gruss A, Ehrlich SD, Maguin E. High- efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol , 1993, 175(11): 3628-3635.
doi: 10.1128/jb.175.11.3628-3635.1993 pmid: 8501066 |
[85] |
Choe D, Lee JH, Yoo M, Hwang S, Sung BH, Cho S, Palsson B, Kim SC, Cho BK. Adaptive laboratory evolution of a genome-reduced Escherichia coli . Nat Commun , 2019, 10(1): 935.
doi: 10.1038/s41467-019-08888-6 pmid: 30804335 |
[86] |
Reuβ DR, Altenbuchner J, Mäder U, Rath H, Ischebeck T, Sappa PK, Thürmer A, Guérin C, Nicolas P, Steil L, Zhu BY, Feussner I, Klumpp S, Daniel R, Commichau FM, Völker U, Stülke J. Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism. Genome Res , 2017, 27(2): 289-299.
doi: 10.1101/gr.215293.116 pmid: 27965289 |
[87] |
Ara K, Ozaki K, Nakamura K, Yamane K, Sekiguchi J, Ogasawara N. Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem , 2007, 46(Pt 3): 169-178.
doi: 10.1042/BA20060111 pmid: 17115975 |
[88] |
Morimoto T, Kadoya R, Endo K, Tohata M, Sawada K, Liu SG, Ozawa T, Kodama T, Kakeshita H, Kageyama Y, Manabe K, Kanaya S, Ara K, Ozaki K, Ogasawara N. Enhanced recombinant protein productivity by genome reduction in bacillus subtilis. DNA Res , 2008, 15(2): 73-81.
doi: 10.1093/dnares/dsn002 pmid: 18334513 |
[89] | Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA , 2010, 107(6): 2646-2651. |
[90] |
Giga-Hama Y, Tohda H, Takegawa K, Kumagai H. Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem , 2007, 46(Pt 3): 147-155.
doi: 10.1042/BA20060106 pmid: 17300221 |
[91] |
Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC. Creation of a bacterial cell controlled by a chemically synthesized genome. Science , 2010, 329(5987): 52-56.
doi: 10.1126/science.1190719 pmid: 20488990 |
[92] | Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF, Qi ZQ, Richter RA, Strychalski EA, Sun LJ, Suzuki Y, Tsvetanova B, Wise KS, Smith HO, Glass JI, Merryman C, Gibson DG, Venter JC. Design and synthesis of a minimal bacterial genome. Science , 2016, 351(6280): aad6253. |
[93] |
Sleator RD. The story of Mycoplasma mycoides JCVI-syn1.0: the forty million dollars microbe. Bioeng Bugs , 2010, 1(4): 229-230.
doi: 10.4161/bbug.1.4.12465 pmid: 21327053 |
[94] |
Lajoie MJ, Kosuri S, Mosberg JA, Gregg CJ, Zhang D, Church GM. Probing the limits of genetic recoding in essential genes. Science , 2013, 342(6156): 361-363.
doi: 10.1126/science.1241460 |
[95] | Fredens J, Wang KH, de la Torre D, Funke LFH, Robertson WE, Christova Y, Chia T, Schmied WH, Dunkelmann DL, Beránek V, Uttamapinant C, Llamazares AG, Elliott TS, Chin JW. Total synthesis of Escherichia coli with a recoded genome. Nature , 2019, 569(7757): 514-518. |
[96] |
Benosman R, Ieng SH, Clercq C, Bartolozzi C, Srinivasan M. Asynchronous frameless event-based optical flow. Neural Netw , 2012, 27: 32-37.
doi: 10.1016/j.neunet.2011.11.001 pmid: 22154354 |
[97] |
Wongsuphasawat K, Gotz D. Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization. IEEE Trans Vis Comput Graph , 2012, 18(12): 2659-2668.
doi: 10.1109/TVCG.2012.225 pmid: 26357175 |
[98] |
Rogister P, Benosman R, Ieng SH, Lichtsteiner P, Delbruck T. Asynchronous event-based binocular stereo matching. IEEE Trans Neural Netw Learn Syst , 2012, 23(2): 347-353.
doi: 10.1109/TNNLS.2011.2180025 pmid: 24808513 |
[99] |
Osswald M, Ieng SH, Benosman R, Indiveri G. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems. Sci Rep , 2017, 7: 40703.
doi: 10.1038/srep40703 pmid: 28079187 |
[100] | Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-adaptation of feature detectors. Comput sci , 2012, 3(4): 212-223. |
[101] | Deng J, Dong W, Socher R, Li LJ, Li FF. ImageNet: a large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, 248-255. |
[102] |
Van Rullen R, Thorpe SJ. Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput , 2001, 13(6): 1255-1283.
doi: 10.1162/08997660152002852 pmid: 11387046 |
[103] |
Mao C, Labean TH, Relf JH, Seeman NC. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature , 2000, 407(6803): 493-496.
doi: 10.1038/35035038 pmid: 11028996 |
[104] |
Hu YH, Liu HJ, Pfeiffer M, Delbruck T. DVS benchmark datasets for object tracking, action recognition, and object recognition. Front Neurosci , 2016, 10: 405.
doi: 10.3389/fnins.2016.00405 pmid: 27630540 |
[105] |
Qian JF, Ferguson TM, Shinde DN, Ramírez-Borrero AJ, Hintze A, Adami C, Niemz A. Sequence dependence of isothermal DNA amplification via EXPAR. Nucleic Acids Res , 2012, 40(11): e87.
doi: 10.1093/nar/gks230 pmid: 22416064 |
[106] |
Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: The KITTI dataset. Int J Robot Res , 2013, 32(11): 1231-1237.
doi: 10.1177/0278364913491297 |
[107] |
Barranco F, Fermuller C, Aloimonos Y, Delbruck T. A dataset for visual navigation with neuromorphic methods. Front Neurosci , 2016, 10: 49.
doi: 10.3389/fnins.2016.00049 pmid: 26941595 |
[108] |
Adleman LM. Molecular computation of solutions to combinatorial problems. Science , 1994, 266(5187): 1021-1024.
doi: 10.1126/science.7973651 pmid: 7973651 |
[109] | Ogihara M, Ray A. DNA-based parallel computation by “counting”. DNA based comput III , 1997, 255-264. |
[110] | Deaton R, Murphy RC, Rose JA, Garzon M, Franceschetti DR, Stevens SE. A DNA based implementation of an evolutionary search for good encodings for DNA computation. 1997. |
[111] | Parker J. Computing with DNA - although DNA clearly outclasses any silicon-based computer when it comes to information storage and processing speed, a DNA-based PC is still a long way off. Embo J , 2003, 4(1): 7-10. |
[112] |
Arkin A. Setting the standard in synthetic biology. Nat Biotechnol , 2008, 26(7): 771-774.
doi: 10.1038/nbt0708-771 pmid: 18612298 |
[113] | Seeman N, Wang H, Liu B, Qi J, Li X, Yang X, Liu F, Sun WQ, Shen ZY, Wang Y, Sha RJ, Mao C, Zhang S, Fu TJ, Du SM, Mueller JE, Zhang Y, Chen J. The perils of polynucleotides: The experimental gap between the design and assembly of unusual DNA structures. 1998. |
[114] | LIANG QF, WANG Q, QI QS. Synthetic biology and rearrangements of microbial genetic material. Hereditas (Beijing) , 2011, 33(10): 1102-1112. |
梁泉峰, 王倩, 祁庆生. 合成生物学与微生物遗传物质的重构. 遗传, 2011, 33(10): 1102-1112. | |
[115] | Xu HM, Xie ZX, Liu D, Wu Y, Li BZ, Yuan YJ. Design and synthesis of yeast chromosomes. Hereditas(Beijing) , 2017, 39(10): 865-876. |
徐赫鸣, 谢泽雄, 刘夺, 吴毅, 李炳志, 元英进. 酿酒酵母染色体设计与合成研究进展. 遗传, 2017, 39(10): 865-876. |
[1] | 于一凡, 欧阳臻, 郭娟, 赵瑜君, 黄璐琦. 植物质体基因工程调控元件研究进展[J]. 遗传, 2023, 45(6): 501-513. |
[2] | 文钟灵, 杨旻恺, 陈星雨, 郝晨宇, 任然, 储淑娟, 韩洪苇, 林红燕, 陆桂华, 戚金亮, 杨永华. 酸铝胁迫土壤中耐铝大豆根际不同部位细菌群落结构、功能及其对促生菌富集作用的研究[J]. 遗传, 2021, 43(5): 487-500. |
[3] | 刘硕, 曾志, 曾凡才, 杜萌泽. 基于序列相似性和Z曲线方法重注释原核生物蛋白编码基因[J]. 遗传, 2020, 42(7): 691-702. |
[4] | 高志伟, 王龙. 真核生物起源研究进展[J]. 遗传, 2020, 42(10): 929-948. |
[5] | 王博,刘芳,张二春,沃晨亮,陈振家,钱璞毅,卢浩荣,曾文君,陈泰,危金普,万仟,王韧,徐讯. 国家基因库:共有、共为、共享[J]. 遗传, 2019, 41(8): 761-772. |
[6] | 杨超, 杨瑞馥, 崔玉军. 细菌全基因组关联研究的方法与应用[J]. 遗传, 2018, 40(1): 57-65. |
[7] | 李志芳, 冯自力, 赵丽红, 师勇强, 冯鸿杰, 朱荷琴. 转几丁质酶和葡聚糖酶双价基因棉花对土壤细菌种群多样性的影响[J]. 遗传, 2015, 37(8): 821-827. |
[8] | 谢龙祥, 于召箫, 郭思瑶, 李萍, AbualgasimElgailiAbdalla, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用[J]. 遗传, 2015, 37(8): 793-800. |
[9] | 彭哲慧,潘超,孙鹏,冯尔玲,吴军,朱力,彭清忠,王恒樑. 生物法合成伤寒O-糖蛋白结合疫苗及其免疫原性评估[J]. 遗传, 2015, 37(5): 473-479. |
[10] | 杨小亮,白大章,邱巍,董慧琴,李大全,陈芳,马润林,Hugh T Blair,高剑峰. 以绵羊MHC区段BAC克隆酶切片段为探针杂交筛选绵羊混合组织cDNA文库[J]. 遗传, 2012, 34(7): 887-894. |
[11] | 叶远浓,郭锋彪. 微生物必需基因的理论研究现状[J]. 遗传, 2012, 34(4): 420-430. |
[12] | 付爱思,刘然,朱静,刘天罡. 遗传改造微生物代谢途径生产新型柴油燃料的研究进展[J]. 遗传, 2011, 33(10): 1121-1133. |
[13] | 梁泉峰,王倩,祁庆生. 合成生物学与微生物遗传物质的重构[J]. 遗传, 2011, 33(10): 1102-1112. |
[14] | 谢池楚,贾海云,陈月华. 细菌几丁质酶基因的表达调控[J]. 遗传, 2011, 33(10): 1029-1038. |
[15] | 谢兆辉. RNA沉默在植物生物逆境反应中的作用[J]. 遗传, 2010, 32(6): 561-570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: