[1] Liu XH, Fortin K, Mourelatos Z. MicroRNAs: biogenesis and molecular functions. Brain Pathol , 2008, 18(1): 113-121. [2] Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol , 2005, 3(3): e85. [3] Wang WX, Wilfred BR, Xie K, Jennings MH, Hu YH, Stromberg AJ, Nelson PT. Individual microRNAs (miRNAs) display distinct mRNA targeting "rules". RNA Biol , 2010, 7(3): 373-380. [4] Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A. A combined computational-experimental approach predicts human microRNA targets. Genes Dev , 2004, 18(10): 1165-1178. [5] Griffiths-Jones S. The microRNA registry. Nucleic Acids Res , 2004, 32(Database issue): D109-D111. [6] Finnerty JR, Wang WX, Hébert SS, Wilfred BR, Mao G, Nelson PT. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. J Mol Biol , 2010, 402(3): 491-509. [7] Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA , 2005, 11(3): 241-247. [8] Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, Brown D, Labourier E. An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA , 2005, 11(9): 1461-1470. [9] Bruchova H, Yoon D, Agarwal AM, Mendell J, Prchal JT. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol , 2007, 35(11): 1657-1667. [10] Choong ML, Yang HH, McNiece I. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol , 2007, 35(4): 551-564. [11] Yang GH, Wang F, Yu J, Wang XS, Yuan JY, Zhang JW. MicroRNAs are involved in erythroid differentiation control. J Cell Biochem , 2009, 107(3): 548-556. [12] Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA , 2006, 12(2): 187-191. [13] Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol , 2004, 5(9): R68. [14] Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S. A microRNA targeting dicer for metastasis control. Cell , 2010, 141(7): 1195-1207. [15] Wang WX, Wilfred BR, Hu Y, Stromberg AJ, Nelson PT. Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. RNA , 2010, 16(2): 394-404. [16] Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol , 2002, 12(9): 735-739. [17] Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res , 2003, 1(12): 882-891. [18] http: //www. mirbase. org/cgi-bin/mirna_entry. pl?acc= I0000438. 20140330. [19] Möröy T, Geisen C. Cyclin E. Int J Biochem Cell Biol , 2004, 36(8): 1424-1439. [20] Xia H, Qi Y, Ng SS, Chen X, Chen S, Fang M, Li D, Zhao Y, Ge R, Li G, Chen Y, He ML, Kung HF, Lai L, Lin MC. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun , 2009, 380(2): 205-210. [21] Bueno MJ, Gómez de Cedrón M, Laresgoiti U, Fernández- iqueras J, Zubiaga AM, Malumbres M. Multiple E2F-indced microRNAs prevent replicative stress in response to mitogenic signaling. Mol Cell Biol , 2010, 30(12): 2983-2995. [22] Sun G, Shi L, Yan SS, Wan ZQ, Jiang N, Fu LS, Li M, Guo J. MiR-15b targets cyclin D1 to regulate proliferation and apoptosis in glioma cells. Biomed Res Int , 2014, 2014: 687826. [23] Kuwana T, Newmeyer DD. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol , 2003, 15(6): 691-699. [24] Guo CJ, Pan Q, Li DG, Sun H, Liu BW. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. J Hepatol , 2009, 50(4): 766-778. [25] Chung GE, Yoon JH, Myung SJ, Lee JH, Lee SH, Lee SM, Kim SJ, Hwang SY, Lee HS, Kim CY. High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol Rep , 2010, 23(1): 113-119. [26] An FM, Gong BD, Wang H, Yu DS, Zhao GD, Lin LY, Tang WL, Yu H, Bao SS, Xie Q. miR-15b and miR-16 regulate TNF mediated hepatocyte apoptosis via BCL2 in acute liver failure. Apoptosis , 2012, 17(7): 702-716. [27] Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer , 2008, 123(2): 372-379. [28] Sun H, Meng X, Han J, Zhang Z, Wang B, Bai X, Zhang X. Anti-cancer activity of DHA on gastric cancer-an in vitro and in vivo study. Tumour Biol , 2013, 34(6): 3791-3800. [29] Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med , 2012, 2(7): a006502. [30] Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem , 2013, 153(1): 13-19. [31] Perrot-Applanat M, Di Benedetto M. Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion. Cell Adh Migr , 2012, 6(6): 547-553. [32] Zheng X, Chopp M, Lu Y, Buller B, Jiang F. MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 and MMP-3. Cancer Lett , 2013, 329(2): 146-154. [33] Chan LS, Yue PY, Wong YY, Wong RN. MicroRNA-15b conributes to ginsenoside-Rg1-induced angiogenesis through increased expression of VEGFR-2. Biochem Pharmacol , 2013, 86(3): 392-400. [34] Liu Z, Yang D, Xie P, Ren G, Sun G, Zeng X, Sun X. MiR-106b and miR-15b modulate apoptosis and angiogenesis in myocardial infarction. Cell Physiol Biochem , 2012, 29(5-6): 851-862. [35] Wu CS, Yen CJ, Chou RH, Chen JN, Huang WC, Wu CY, Yu YL. Downregulation of microRNA-15b by hepatitis B virus X enhances hepatocellular carcinoma proliferation via fucosyltransferase 2-induced Globo H expression. Int J Cancer , 2014, 134(7): 1638-1647. [36] Marasa BS, Srikantan S, Masuda K, Abdelmohsen K, Kuwano Y, Yang X, Martindale JL, Rinker-Schaeffer CW, Gorospe M. Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple microRNAs. Sci Signal , 2009, 2(94): ra69. [37] Weirauch U, Beckmann N, Thomas M, Grünweller A, Huber K, Bracher F, Hartmann RK, Aigner A. Functional role and therapeutic potential of the pim-1 kinase in colon carcinoma. Neoplasia , 2013, 15(7): 783-794. [38] Nishi H, Ono K, Iwanaga Y, Horie T, Nagao K, Takemura G, Kinoshita M, Kuwabara Y, Mori RT, Hasegawa K, Kita T, Kimura T. MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J Biol Chem , 2010, 285(7): 4920-4930. [39] Stather PW, Sylvius N, Wild JB, Choke E, Sayers RD, Bown MJ. Differential microRNA expression profiles in peripheral arterial disease. Circ Cardiovasc Genet , 2013, 6(5): 490-497. [40] Tijsen AJ, van der Made I, van den Hoogenhof MM, Wijnen WJ, van Deel ED, de Groot NE, Alekseev S, Fluiter K, Schroen B, Goumans MJ, van der Velden J, Duncker DJ, Pinto YM, Creemers EE. The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res , 2014, 104(1): 61-71. [41] Ezzie ME, Crawford M, Cho JH, Orellana R, Zhang S, Gelinas R, Batte K, Yu L, Nuovo G, Galas D, Diaz P, Wang K, Nana-Sinkam SP. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax , 2012, 67(2): 122-131. [42] Rahman M, Lovat F, Romano G, Calore F, Acunzo M, Bell EH, Nana-Sinkam P. miR-15b/16-2 regulates factors that promote p53 phosphorylation and augments the DNA damage response following radiation in the lung. J Biol Chem , 2014, 289(38): 26406-26416. [43] Wang H, Peng W, Ouyang X, Dai Y. Reduced circulating miR-15b is correlated with phosphate metabolism in patients with end-stage renal disease on maintenance hemodialysis. Ren Fail , 2012, 34(6): 685-690. [44] Pescador N, Pérez-Barba M, Ibarra JM, Corbatón A, Martínez-Larrad MT, Serrano-Ríos M. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One , 2013, 8(10): e77251. [45] Xu J, Zgheib C, Hu J, Wu W, Zhang L, Liechty KW. The Role of MicroRNA-15b in the impaired angiogenesis in diabetic wounds. Wound Repair Regen , 2014, 22(5): 671-677. [46] Zhou Y, McMaster M, Woo K, Janatpour M, Perry J, Karpanen T, Alitalo K, Damsky C, Fisher SJ. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol , 2002, 160(4): 1405- 1423. [47] Cross JC, Hemberger M, Lu Y, Nozaki T, Whiteley K, Masutani M, Adamson SL. Trophoblast functions, angiogenesis and remodeling of the maternal vasculature in the placenta. Mol Cell Endocrinol , 2002, 187(1-2): 207- 212. [48] Noris M, Perico N, Remuzzi G. Mechanisms of disease: Pre-eclampsia. Nat Clin Pract Nephrol , 2005, 1(2): 98-114. [49] Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet , 2005, 365(9461): 785-799. [50] Mahmoudi N, Graves SW, Solomon CG, Repke JT, Seely EW. Eclampsia: a 13-year experience at a United States tertiary care center. J Womens Health Gend Based Med , 1999, 8(4): 495-500. [51] Gupte S, Wagh G. Preeclampsia-Eclampsia. J Obstet Gynaecol India , 2014, 64(1): 4-13. [52] Wang Y, Fan H, Zhao G, Liu D, Du L, Wang Z, Hu Y, Hou Y. miR-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia. FEBS J , 2012, 279(24): 4510-4524. [53] Bai Y, Yang WW, Yang HX, Liao QP, Ye G, Fu GD, Ji L, Xu P, Wang H, Li YX, Peng C, Wang YL. Downregulated miR-195 detected in preeclamptic placenta affects trophoblast cell invasion via modulating ActRIIA expression. PLoS One , 2012, 7(6): e38875. [54] Nadeem L, Munir S, Fu G, Dunk C, Baczyk D, Caniggia I, Lye S, Peng C. Nodal signals through activin receptor-like kinase 7 to inhibit trophoblast migration and invasion: implication in the pathogenesis of preeclampsia. Am J Pathol , 2011, 178(3): 1177-1189. [55] Mouillet JF, Donker RB, Mishima T, Cronqvist T, Chu T, Sadovsky Y. The unique expression and function of miR-424 in human placental trophoblasts. Biol Reprod , 2013, 89(2): 25. [56] Mayor-Lynn K, Toloubeydokhti T, Cruz AC, Chegini N. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod Sci , 2011, 18(1): 46-56. |