[1] | Xu XD, Xie QG. The circadian clock in plants. Chin J Nat, 2013, 35(2): 118-126. | [1] | 徐小冬, 谢启光. 植物生物钟研究的历史回顾与最新进展. 自然科学, 2013, 35(2): 118-126. | [2] | Seo PJ, Mas P. STRESSing the role of the plant circadian clock. Trends Plant Sci, 2015, 20(4): 230-237. | [3] | Alabad?? D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA. Reciprocal regulation between TOC1 and LHY/ CCA1 within theArabidopsis circadian clock. Science, 2001, 293(5531): 880-883. | [4] | Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science, 2012, 336(6077): 75-79. | [5] | Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Nati Acad Sci USA, 2012, 109(8): 3167-3172. | [6] | Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell, 2010, 22(3): 594-605. | [7] | Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol, 2005, 15(1): 47-54. | [8] | Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA. LUX ARRHYTHMO encodes a night time repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol, 2011, 21(2): 126-133. | [9] | Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA. The ELF4-ELF3- LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2011, 475(7356): 398-402. | [10] | Hsu PY, Harmer SL. Wheels within wheels: the plant circadian system. Trends Plant Sci, 2014, 19(4): 240-249. | [11] | Millar AJ. The intracellular dynamics of circadian clocks reach for the light of ecology and evolution. Annu Rev Plant Biol, 2016, 67(1): 595-618. | [12] | Gehan MA, Greenham K, Mockler TC, McClung CR. Transcriptional networks-crops, clocks, and abiotic stress. Curr Opin Plant Biol, 2015, 24: 39-46. | [13] | Murakami M, Tago Y, Yamashino T, Mizuno T. Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol, 2007, 48(1): 110-121. | [14] | Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T. The evolutionarily conserved Os |
[1] |
卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] |
刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[3] |
郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[4] |
郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844. |
[5] |
陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[6] |
刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[7] |
李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[8] |
张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[9] |
代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
[10] |
闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. |
[11] |
胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[12] |
张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
[13] |
刘次桃, 王威, 毛毕刚, 储成才. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185. |
[14] |
杨德卫, 郑向华, 程朝平, 叶宁, 黄凤凰, 叶新福. 基于CSSLs群体定位和图位克隆水稻长芒基因GAD1-2[J]. 遗传, 2018, 40(12): 1101-1111. |
[15] |
辛高伟, 胡熙璕, 王克剑, 王兴春. Cas9蛋白变体VQR高效识别水稻NGAC前间区序列邻近基序[J]. 遗传, 2018, 40(12): 1112-1119. |
|