| [1] | Bergh O, Børsheim KY, Bratbak G, Heldal M . High abundance of viruses found in aquatic environments. Nature, 1989,340(6233):467-468. | | [2] | Danovaro R , Dell'Anno A, Trucco A, Serresi M, Vanucci S. Determination of virus abundance in marine sediments. Appl Environ Microbiol, 2001,67(3):1384-1387. | | [3] | Williamson KE, Radosevich M, Wommack KE . Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol, 2005,71(6):3119-3125. | | [4] | Rohwer F . Global phage diversity. Cell, 2003,113(2):141. | | [5] | Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, Jacobs WR, Hendrix RW, Lawrence JG, Hatfull GF . Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife, 2015,4:e06416. | | [6] | Grissa I, Vergnaud G, Pourcel C . The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007,8(1):172. | | [7] | Seed KD, Lazinski DW, Calderwood SB, Camilli A . A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, 2013,494(7438):489-491. | | [8] | Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA , Van Der Oost J, Backofen R, Koonin EV. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015,13(11):722-736. | | [9] | Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV . Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol, 2017,15(3):169-182. | | [10] | Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao YJ, Pirzada ZA, Eckert MR, Vogel, Charpentier E . CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011,471(7340):602-607. | | [11] | Walker FC, Chou-Zheng L, Dunkle JA, Hatoum-Aslan A . Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases. Nucleic Acids Res, 2017,45(4):2112-2123. | | [12] | Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R . CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature, 2015,520(7548):505-510. | | [13] | Wang JY, Li JZ, Zhao HT, Sheng G, Wang M, Yin ML, Wang YL . Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell, 2015,163(4):840-853. | | [14] | Nuñez JK, Lee ASY, Engelman A, Doudna JA . Integrase- mediated spacer acqu |
| [1] |
徐雪峰, 金兴坤, 史燕, 赵哲. 弧菌基因组中抗噬菌体防御系统的构成与分布特征分析[J]. 遗传, 2025, 47(9): 1057-1068. |
| [2] |
周迅, 周世杰, 刘捷, 王宇祥. 靶向RNA的CRISPR/Cas系统及衍生技术[J]. 遗传, 2025, 47(8): 842-860. |
| [3] |
马佳雯, 梁新乐. 基于宏病毒组测序技术解析异常发酵醋醪噬菌体群落结构与功能[J]. 遗传, 2025, 47(4): 489-498. |
| [4] |
廉小平, 黄光福, 张玉娇, 张静, 胡凤益, 张石来. 长雄野生稻有利基因的发掘与利用[J]. 遗传, 2023, 45(9): 765-780. |
| [5] |
刘丹妮, 武海萍, 周国华. 可视化分析在病原体核酸现场快速检测中的研究进展[J]. 遗传, 2023, 45(4): 306-323. |
| [6] |
陈荟玉, 赵素文. 噬菌体Z基因组生物合成通路的研究进展[J]. 遗传, 2023, 45(10): 887-903. |
| [7] |
郭雨萱, 严顺平, 王应祥. 重组酶RAD51和DMC1功能保守和分化研究进展[J]. 遗传, 2022, 44(5): 398-413. |
| [8] |
陈学梅, 魏云林, 季秀玲. 前噬菌体研究进展[J]. 遗传, 2021, 43(3): 240-248. |
| [9] |
耿喜宁, 芦特, 杜康, 杨珺, 康向阳. 不同基因型毛白杨同源重组变异研究[J]. 遗传, 2021, 43(2): 182-193. |
| [10] |
徐志伟, 魏云林, 季秀玲. 假单胞菌噬菌体基因组学研究进展[J]. 遗传, 2020, 42(8): 752-759. |
| [11] |
王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
| [12] |
李帆, 余蓉培, 孙丹, 王继华, 李绅崇, 阮继伟, 单芹丽, 陆平利, 汪国鲜. 抑制植物减数分裂重组的分子机理[J]. 遗传, 2019, 41(1): 52-65. |
| [13] |
全绒, 李国玲, 莫健新, 钟翠丽, 李紫聪, 顾婷, 郑恩琴, 刘德武, 蔡更元, 吴珍芳, 张献伟. RNA干扰猪NHEJ通路修复因子对HR效率的影响[J]. 遗传, 2018, 40(9): 749-757. |
| [14] |
童晓玲,方春燕,盖停停,石津,鲁成,代方银. CRISPR/Cas9系统在昆虫中的应用[J]. 遗传, 2018, 40(4): 266-278. |
| [15] |
李明,程飞跃,龚路遥,向华. 微生物新型防御系统的系统性发现与展望[J]. 遗传, 2018, 40(4): 259-265. |
|