[1] | Wang L, Xu YM, Cheng ZJ, Xiong ZP, Deng LB . Advances in genetics of metabolic disorders of cholesterol. Hereditas (Beijing), 2014,36(9):857-863. | [1] | 王立, 徐颜美, 程竹君, 熊招平, 邓立彬 . 胆固醇代谢紊乱的遗传学研究进展. 遗传, 2014,36(9):857-863. | [2] | Hofmann AF . Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab Rev, 2004,36(3-4):703-722. | [3] | Akerlund JE, Bj?rkhem I . Studies on the regulation of cholesterol 7α-hydroxylase and HMG-CoA reductase in rat liver: effects of lymphatic drainage and ligation of the lymph duct. J Lipid Res, 1991,31(12):2159-2166. | [4] | Vlahcevic ZR, Heuman DM, Hylemon PB . Regulation of bile acid synthesis. Hepatology, 1991,13(3):590-600. | [5] | Chiang JYL . Bile acid metabolism and signaling. Compr Physiol, 2013,3(3):1191-1212. | [6] | Chiang JYL . Recent advances in understanding bile acid homeostasis. F1000research, 2017,6:2029. | [7] | Axelson M, Sjovall J . Potential bile acid precursors in plasma-possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J steroid Biochem, 1990,36(6):631-640. | [8] | Carey MC, Small DM . Micellar properties of sodium fusidate, a steroid antibiotic structurally resembling the bile salts. J Lipid Res, 1971,12(5):604-613. | [9] | Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR . Bile acids and bariatric surgery. Mol Aspects Med, 2017,56:75-89. | [10] | Zhang JC, Nie QH . Bile acid metabolism and its related progress. Chin J Gastroenter Hepatol, 2008,17(11):953-956. | [10] | 张久聪, 聂青和 . 胆汁酸代谢及相关进展. 胃肠病学和肝病学杂志. 2008,17(11):953-956. | [11] | Ferrebee CB, Dawson PA . Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B, 2015,5(2):129-134. | [12] | Wang DP, Stroup D, Marrapodi M, Crestani M, Galli G, Chiang JY . Transcriptional regulation of the human cholesterol 7alpha-hydroxylase gene (CYP7A) in HepG2 cells. J Lipid Res, 1996,37(9):1831-1841. | [13] | Ding L, Yang L, Wang Z, Huang W . Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B, 2015,5(2):135-144. | [14] | Molinaro A, Wahlstr?m A, Marschall HU . Role of bile acids in metabolic control. Trends Endocrin Met, 2017,29(1):31-41. | [15] | Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA . A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell, 2000,6(3):517-526. | [16] | Lee H, Zhang Y, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA . FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res, 2005,47(1):201-214. | [17] | Boulias K, Katrakili N, Bamberg K, Underhill P, Greenfield A, Talianidis I . Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP. Embo J, 2005,24(14):2624-2633. | [18] | Seol W, Choi HS, Moore DD . An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science, 1996,272(5266):1336-1339. | [19] | Nitta M, Ku S, Brown C, Okamoto AY, Shan B . CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7alpha-hydroxylase gene. Proc Natl Acad Sci USA, 1999,96(12) 6660-6665. | [20] | Kliewer SA, Mangelsdorf DJ . Bile acids as hormones: the FXR-FGF15/19 pathway. Digest Dis, 2015,33(3):327-331. | [21] | Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y . Impaired negative feedback suppression of bile acid synthesis in mice lacking beta Klotho. J Clin Invest, 2005,115(8):2202-2208. | [22] | Li T, Chiang JYL . Bile acids as metabolic regulators. Curr Opin Gastroen. 2015,31(2):159-165. | [23] | Kuro-o M . Endocrine FGFs and Klothos: emerging concepts. Trends Endocrin Met, 2008,19(7):239-245. | [24] | Zhou H, Hylemon PB . Bile acids are nutrient signaling hormones. Steroids, 2014,86:62-68. | [25] | Yu C, Wang F, Jin C, Huang X, McKeehan WL . Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J Biol Chem, 2005,280(18):17707-17714. | [26] | Fu T, Kim YC, Byun S, Kim DH, Seok S, Suino-Powell K, Xu HE, Kemper B, Kemper JK . FXR primes the liver for intestinal FGF15 signaling by transient induction of β-Klotho. Mol Endocrinol, 2016,30(1):92-103. | [27] | Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima YI . Molecular cloning and expression analyses of mouse β-klotho, which encodes a novel Klotho family protein. Mech Develop, 2000,98(1-2):115-119. | [28] | Yu C, Wang F, Kan M, Jin C, Jones RB, Weinstein M, Deng CX, McKeehan WL . Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem, 2000,275(20):15482-15489. | [29] | Triantis V, Saeland E, Bijl N, Oude-Elferink RP, Jansen PL . Glycosylation of fibroblast growth factor receptor 4 is a key regulator of fibroblast growth factor 19-mediated down-regulation of cytochrome P450 7A1. Hepatology, 2010,52(2):656-666. | [30] | Wu X, Ge H, Lemon B, Weiszmann J, Gupte J, Hawkins N, Li X, Tang J, Lindberg R, Li Y . Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proc Natl Acad Sci USA, 2009,106(34):14379-14384. | [31] | Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, Atkins AR, Khvat A, Schnabl B, Yu RT, Brenner DA, Coulter S, Liddle C, Schoonjans K, Olefsky JM, Saltiel AR, Downes M, Evans RM . Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med, 2015,21(2):159-165. | [32] | Mitro N, Godio C, De Fabiani E, Scotti E, Galmozzi A, Gilardi F, Caruso D, Vigil Chacon AB, Crestani M . Insights in the regulation of cholesterol 7alpha-hydroxylase gene reveal a target for modulating bile acid synthesis. Hepatology, 2010,46(3):885-897. | [33] | Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ . Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell, 2000,6(3):507-515. | [34] | De Fabiani E, Mitro N, Anzulovich AC, Pinelli A, Galli G, Crestani M . The negative effects of bile acids and tumor necrosis factor-α on the transcription of cholesterol 7 α-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4. J Biol Chem, 2001,276(33):30708-16. | [35] | Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R . A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev, 2000,14(9):1048-1057. | [36] | Stroup D, Chiang JY . HNF4 and COUP-TFII interact to modulate transcription of the cholesterol 7alpha-hydroxylase gene (CYP7A1). J Lipid Res, 2000,41(1):1-11. | [37] | De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M . Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem, 2003,278(40):39124-39132. | [38] | Song KH, Chiang JY . Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis. Hepatology, 2006,43(1):117-125. | [39] | Uehara Y, Mori C, Noda T, Shiota K, Kitamura N . Rescue of embryonic lethality in hepatocyte growth factor/scatter factor knock-out mice. Genesis, 2015,27(3):99-103. | [40] | Cheng Z, Liu L, Zhang XJ, Lu M, Wang Y, Assfalg V, Laschinger M, von Figura G, Sunami Y, Michalski CW, Kleeff J, Friess H, Hartmann D, Hüser N . Peroxisome proliferator-activated receptor gamma negatively regulates liver regeneration after partial hepatectomy via the HGF/ c-Met/ERK1/2 pathways. Sci Rep, 2018,8(1):11894. | [41] | Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, Dong B, Huang X, Moore DD . Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science, 2006,312(5771):233-236. | [42] | Limaye PB, Bowen WC, Orr AV, Luo J, Tseng GC, Michalopoulos GK . Mechanisms of hepatocyte growth factor-mediated and epidermal growth factor-mediated signaling in transdifferentiation of rat hepatocytes to biliary epithelium. Hepatology, 2008,47(5):1702-1713. | [43] | Li T, Jahan A, Chiang JY . Bile acids and cytokines inhibit the human cholesterol 7α-hydroxylase gene via the JNK/ c-jun pathway in human liver cells. Hepatology, 2006,43(6):1202-1210. | [44] | Miyake JH, Wang SL, Davis RA . Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7α hydroxylase. J Biol Chem, 2000,275(29):21805-21808. | [45] | Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E, Lucia S, Adorini L, D'Agati VD, Levi J, Rosenberg A, Kopp JB, Gius DR, Saleem MA, Levi M . G protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J Am Soc Nephrol, 2015,27(5):1362-1378. | [46] | Katsuma S, Hirasawa A, Tsujimoto G . Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Bioph Res Co., 2005,329(1):386-390. | [47] | Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, Patterson AD, Gonzalez FJ, Chiang JYL . Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology, 2018,68(4):1574-1588. | [48] | Velazquez-Villegas LA, Perino A, Lemos V, Zietak M, Nomura M, Pols TWH, Schoonjans K . TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun, 2018,9:245. | [49] | Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR . Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev, 2002,23(23):38-89. | [50] | Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J . Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006,439(7075):484-489. | [51] | Ladurner A, Zehl M, Grienke U, Hofstadler C, Faur N, Pereira FC, Berry D, Dirsch VM, Rollinger JM . Allspice and clove as source of triterpene acids activating the G protein-coupled bile acid receptor TGR5. Front Pharmacol, 2017,8:468. | [52] | Hu MM, He WR, Gao P, Yang Q, He K, Cao LB, Li S, Feng YQ, Shu HB . Virus-induced accumulation of intracellular bile acids activates the TGR5-α-arrestin-SRC axis to enable innate antiviral immunity. Cell Res, 2019, 193-205. | [53] | He M, Xue Y . MicroRNA-148a suppresses proliferation and invasion potential of non-small cell lung carcinomas via regulation of STAT3. OncoTargets Ther, 2017,10:1353-1361. | [54] | Deb D, Rajaram S, Larsen JE, Dospoy PD, Marullo R, Li LS, Avila K, Xue F, Cerchietti L, Minna JD, Altschuler SJ, Wu LF . Combination therapy targeting BCL6 and phospho-STAT3 defeats intra-tumor heterogeneity in a subset of non-small cell lung cancers. Cancer Res, 2017,77(11):3070-3081. | [55] | Liu X, Chen B, You W, Xue S, Qin H, Jiang H . The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer. Cancer Lett, 2017,412:194-207. | [56] | Fischer S, Beuers U, Spengler U, Zwiebel FM, Koebe HG . Hepatic levels of bile acids in end-stage chronic cholestatic liver disease. Clin Chim Acta, 1996,251(2):173-186. | [57] | Carazo A, Hyrsova L, Dusek J, Chodounska H, Horvatova A, Berka K, Bazgier V, Gan-Schreier H, Chamulitrat W, Kudova E, Pavek P . Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor. Toxicol Lett, 2016,265:86-96. | [58] | Hrycay E, Forrest D, Liu L, Wang R, Tai J, Deo A, Ling V, Bandiera S . Hepatic bile acid metabolism and expression of cytochrome P450 and related enzymes are altered in Bsep(-/-) mice. Mol Cell Biochem, 2014,389(1-2):119-132. | [59] | Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA . The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA, 2001,98(6):3369-3374. | [60] | Zhang X, Ma Z, Liang Q, Tang X, Hu D, Liu C, Tan H, Xiao C, Zhang B, Wang Y, Gao Y . Tanshinone IIA exerts protective effects in a LCA-induced cholestatic liver model associated with participation of pregnane X receptor. J Ethnopharmacol, 2015,164:357-367. | [61] | Sung HJ, Choi SM, Yoon Y, An KS . Tanshinone IIA, an ingredient of Salvia miltiorrhiza BUNGE, induces apoptosis in human leukemia cell lines through the activation of caspase-3. Exp Mol Med, 1999,31(4):174-178. | [62] | Li T, Chiang JYL . Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7β-hydroxylase gene transcription. Am J Physiol Gastrointest Liver Physiol, 2005,288(1):74-84. | [63] | Ishizawa M, Akagi D, Makishima M . Lithocholic acid is a vitamin D receptor ligand that acts preferentially in the ileum. Int J Mol Sci, 2018,19(7):1975. | [64] | Cheng J, Fang ZZ, Kim JH, Krausz KW, Tanaka N, Chiang JY, Gonzalez FJ . Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice. J Lipid Res, 2013,55(3):455-465. | [65] | Jurutka PW, Thompson PD, Whitfield GK, Eichhorst KR, Hall N, Dominguez CE, Hsieh JC, Haussler CA, Haussler MR . Molecular and functional comparison of 1,25-dihydroxyvitamin D(3) and the novel vitamin D receptor ligand, lithocholic acid, in activating transcription of cytochrome P450 3A4. J Cell Biochem, 2005,94(5):917-943. |
|