遗传 ›› 2015, Vol. 37 ›› Issue (1): 25-33.doi: 10.16288/j.yczz.2015.01.004
梁运鹏1, 于黎1, 2
收稿日期:
2014-07-31
修回日期:
2014-10-20
出版日期:
2015-01-20
发布日期:
2015-01-20
通讯作者:
于黎,博士,研究员,研究方向:动物遗传与进化。E-mail: yuli@ynu.edu.cn
E-mail:yuli@ynu.edu.cn
作者简介:
梁运鹏,硕士研究生,专业方向:动物遗传与进化。E-mail: lyp236@163.com
基金资助:
Yunpeng Liang1, Li Yu1, 2
Received:
2014-07-31
Revised:
2014-10-20
Online:
2015-01-20
Published:
2015-01-20
摘要: 作为哺乳动物第二大目的翼手目(Chiroptera;俗称蝙蝠)在飞行能力、回声定位与听觉系统、食性、冬眠、免疫防御等诸多方面表现出显著而独特的适应性进化,是研究生物对环境适应性进化分子机制的热点模型之一。文章综述了翼手目适应性进化分子机制的研究进展,特别是近年来在基因组水平上开展的相关研究,显示出更为复杂的分子进化模式和功能分化。随着越来越多的翼手目物种基因组数据的产生,将有望揭示新的进化机制,并为后续的功能实验奠定基础,促进人们对翼手目这一类群的认识和了解,同时也为系统认识动物适应性进化分子机制做出贡献。
梁运鹏, 于黎. 翼手目(蝙蝠)适应性进化分子机制的研究进展[J]. 遗传, 2015, 37(1): 25-33.
Yunpeng Liang, Li Yu. Advances on molecular mechanism of the adaptive evolution of Chiroptera (bats)[J]. HEREDITAS(Beijing), 2015, 37(1): 25-33.
[1] Yu L, Wang XY, Jin W, Luan PT, Ting N, Zhang YP. Adaptive evolution of digestive RNASE1 genes in leaf- eating monkeys revisited: new insights from ten additional colobines. Mol Biol Evol , 2010, 27(1): 121-131. [2] Yu L, Jin W, Zhang X, Wang D, Zheng JS, Yang G, Xu SX, Cho S, Zhang YP. Evidence for positive selection on the leptin gene in Cetacea and Pinnipedia. PLoS One , 2011, 6(10): e26579. [3] Yu L, Zhang YP. The unusual adaptive expansion of pancreatic ribonuclease gene in carnivora. Mol Biol Evol , 2006, 23(12): 2326-2335. [4] Zhang J. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat Genet , 2006, 38(7): 819-823. [5] Zhang J, Zhang YP, Rosenberg HF. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat Genet , 2002, 30(4): 411-415. [6] Davies KT, Cotton JA, Kirwan JD, Teeling EC, Rossiter SJ. Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence. Heredity , 2012, 108(5): 480-489. [7] Feng P, Zheng JS, Rossiter SJ, Wang D, Zhao HB. Massive losses of taste receptor genes in toothed and baleen whales. Genome Biol Evol , 2014, 6(6): 1254-1265. [8] Goo SM, Cho S. The expansion and functional diversification of the mammalian ribonuclease a superfamily epitomizes the efficiency of multigene families at generating biological novelty. Genome Biol Evol , 2013, 5(11): 2124-2140. [9] 张劲硕, 张俊鹏, 梁冰, 张树义. 世界翼手目动物分类系统和种类最新报道. 动物学杂志, 2005, 40(2): 79. [10] Simmons NB, Order Chiroptera. In: Wilson DE, Reeder DM, eds. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Baltimore: Johns Hopkins University Press, 2005. [11] Zhang JS, Han NJ, Jones G, Lin LK, Zhang JP, Zhu GJ, Huang DW, Zhang SY. A new species of Barbastella (Chiroptera: Vespertilionidae) from north China. J Mammal , 2007, 88(6): 1393-1403. [12] Zhou ZM, Guillén-Servent A, Lim BK, Eger JL, Wang YX, Jiang XL. A new species from southwestern China in the Afro-Palearctic lineage of the horseshoe bats (Rhinolophus ). J Mammal , 2009, 90(1): 57-73. [13] Teeling EC, Springer MS, Madsen O, Bates P, O'brien SJ, Murphy WJ. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science , 2005, 307(5709): 580-584. [14] Thomas SP, Suthers RA. The physiology and energetics of bat flight. J Exp Biol , 1972, 57(2): 317-335. [15] Maina JN. What it takes to fly: the structural and functional respiratory refinements in birds and bats. J Exp Biol , 2000, 203(20): 3045-3064. [16] 陈星, 沈永义, 张亚平. 线粒体 DNA 在分子进化研究中的应用. 动物学研究, 2012, 33(6): 566-573. [17] Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci USA , 2010, 107(19): 8666-8671. [18] Bakewell MA, Shi P, Zhang J. More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc Natl Acad Sci USA , 2007, 104(18): 7489-7494. [19] Kosiol C, Vinař T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A. Patterns of positive selection in six mammalian genomes. PLoS Genet , 2008, 4(8): e1000144. [20] Zhang GJ, Cowled C, Shi ZL, Huang ZY, Bishop-Lilly KA, Fang XD, Wynne JW, Xiong ZQ, Baker ML, Zhao W, Tachedjian M, Zhu YB, Zhou P, Jiang XT, Ng J, Yang L, Wu LJ, Xiao J, Feng Y, Chen YX, Sun XQ, Zhang Y, Marsh GA, Crameri G, Broder CC, Frey KG, Wang LF, Wang J. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science , 2013, 339(6118): 456-460. [21] O'Keefe K, Li H, Zhang Y. Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol Cell Biol , 2003, 23(18): 6396-6405. [22] Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J , 1998, 17(2): 554-564. [23] 曾燕妮, 沈永义, 张亚平. 基于全基因组正选择基因揭示大狐蝠和小棕蝠功能分化分子机制. 动物学研究, 2013, 34(3): 221-227. [24] Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P. Prestin is the motor protein of cochlear outer hair cells. Nature , 2000, 405(6783): 149-155. [25] Liberman MC, Gao JG, He DZZ, Wu XD, Jia SP, Zuo J. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature , 2002, 419(6904): 300-304. [26] Meiklejohn CD, Montooth KL, Rand DM. Positive and negative selection on the mitochondrial genome. Trends Genet , 2007, 23(6): 259-263. [27] Rand DM. The units of selection on mitochondrial DNA. Annu Rev Ecol Syst , 2001, 32(1): 415-448. [28] Franchini LF, Elgoyhen AB. Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility. Mol Phylogenet Evol , 2006, 41(3): 622-635. [29] Jones G, Teeling EC, Rossiter SJ. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Front Physiol , 2013, 4(117): 1-16. [30] Li G, Wang J, Rossiter SJ, Jones G, Cotton JA, Zhang S. The hearing gene Prestin reunites echolocating bats. Proc Natl Acad Sci USA , 2008, 105(37): 13959-13964. [31] Li Y, Liu Z, Shi P, Zhang JZ. The hearing gene Prestin unites echolocating bats and whales. Curr Biol , 2010, 20(2): R55-R56. [32] Liu Y, Cotton JA, Shen B, Han XQ, Rossiter SJ, Zhang SY. Convergent sequence evolution between echolocating bats and dolphins. Curr Biol , 2010, 20(2): R53-R54. [33] Liu Y, Han NJ, Franchini LF, Xu HH, Pisciottano F, Elgoyhen AB, Rajan KE, Zhang SY. The voltage-gated potassium channel subfamily KQT member 4 (KCNQ4) displays parallel evolution in echolocating bats. Mol Biol Evol , 2012, 29(5): 1441-1450. [34] Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ. Genome-wide signatures of convergent evolution in echolocating mammals. Nature , 2013, 502(7470): 228-231. [35] Seim I, Fang XD, Xiong ZQ, Lobanov AV, Huang ZY, Ma SM, Feng Y, Turanov AA, Zhu YB, Lenz TL, Gerashchenko MV, Fan DD, Hee Yim SH, Yao XM, Jordan D, Xiong YQ, Ma Y, Lyapunov AN, Chen GX, Kulakova OI, Sun YD, Lee SG, Bronson RT, Moskalev AA, Sunyaev SR, Zhang GJ, Krogh A, Wang J, Gladyshev VN. Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii . Nat Commun , 2013, 4(2122): 1-8. [36] Shen YY, Liang L, Li GS, Murphy RW, Zhang YP. Parallel evolution of auditory genes for echolocation in bats and toothed whales. PLoS Genet , 2012, 8(6): e1002788. [37] Liu Z, Li SD, Wang W, Xu DM, Murphy RW, Shi P. Parallel evolution of KCNQ4 in echolocating bats. PLoS One , 2011, 6(10): e26618. [38] Kinnamon SC, Margolskee RF. Mechanisms of taste transduction. Curr Opin Neurobiol , 1996, 6(4): 506-513. [39] Zhao HB, Xu D, Zhang SY, Zhang JZ. Genomic and genetic evidence for the loss of umami taste in bats. Genome Biol Evol , 2012, 4(1): 73-79. [40] Lindemann B. Taste reception. Physiol Rev , 1996, 76(3): 718-766. [41] Bachmanov AA, Beauchamp GK. Taste receptor genes. Annu Rev Nutr , 2007, 27: 389-414. [42] Zhou YY, Dong D, Zhang SY, Zhao HB. Positive selection drives the evolution of bat bitter taste receptor genes. Biochem Genet , 2009, 47(3-4): 207-215. [43] Zhao HB, Zhou YY, Pinto CM, Charles-Dominique P, Galindo-González J, Zhang SY, Zhang JZ. Evolution of the sweet taste receptor gene Tas1r2 in bats. Mol Biol Evol , 2010, 27(11): 2642-2650. [44] Ratcliffe JM, Fenton MB, Galef Jr BG. An exception to the rule: common vampire bats do not learn taste aversions. Anim Behav , 2003, 65(2): 385-389. [45] Bahlman JW, Kelt DA. Use of olfaction during prey location by the common vampire bat (Desmodus rotundus ). Biotropica , 2007, 39(1): 147-149. [46] Gracheva EO, Cordero-Morales JF, González-Carcacía JA, Ingolia NT, Manno C, Aranguren CI, Weissman JS, Julius D. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature , 2011, 476(7358): 88-91. [47] Kishida R, Goris RC, Terashima S, Dubbeldam JL. A suspected infrared-recipient nucleus in the brainstem of the vampire bat, Desmodus rotundus. Brain Res , 1984, 322(2): 351-355. [48] Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC. Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res , 2010, 20(1): 1-9. [49] Hayden S, Bekaert M, Goodbla A, Murphy WJ, Davalos LM, Teeling EC. A cluster of olfactory receptor genes linked to frugivory in bats. Mol Biol Evol , 2014, 31(4): 917-927. [50] Shen B, Han XQ, Zhang JP, Rossiter SJ, Zhang SY. Adaptive evolution in the glucose transporter 4 gene Slc2a4 in old world fruit bats (Family: Pteropodidae). PLoS One , 2012, 7(4): e33197. [51] Kelm DH, Simon R, Kuhlow D, Voigt CC, Ristow M. High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats. Proc Biol Sci , 2011, 278(1724): 3490-3496. [52] Shen B, Fang T, Yang TX, Jones G, Irwin DM, Zhang SY. Relaxed evolution in the tyrosine aminotransferase gene Tat in old world fruit bats (Chiroptera: Pteropodidae). PLoS One , 2014, 9(5): e97483. [53] Yuan LH, Zhao XD, Lin BF, Rossiter SJ, He LJ, Zuo XG, He GM, Jones G, Geiser F, Zhang SY. Adaptive evolution of Leptin in heterothermic bats. PLoS One , 2011, 6(11): e27189. [54] Geiser F, Stawski C. Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integr Comp Biol , 2011, 51(3): 337-348. [55] Geiser F, Körtner G. Hibernation and daily torpor in Australian mammals. Aust J Zool , 2010, 35(2): 204-215. [56] Considine RV, Caro JF. Leptin and the regulation of body weight. Iin J Biochem Cell Biol , 1997, 29(11): 1255-1272. [57] Zhang YY, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature , 1994, 372(6505): 425-432. [58] Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science , 1995, 269(5223): 546-549. [59] Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature , 1998, 395(6704): 763-770. [60] He LJ, Pan Y, He GM, Lin BF, Liao CC, Zuo XG, Yuan LH. Structural and functional studies of leptins from hibernating and non-hibernating bats. Gen Comp Endocrinol , 2010, 168(1): 29-35. [61] 邹果, 张亚平, 于黎. 瘦蛋白 (leptin) 自然选择和适应性进化研究概述. 科学通报, 2013, 58(16): 1473-1482. [62] Grasso P, Leinung MC, Ingher SP, Lee DW. In vivo effects of leptin-related synthetic peptides on body weight and food intake in female ob/ob mice: localization of leptin activity to domains between amino acid residues 106-140. Endocrinology , 1997, 138(4): 1413-1418. [63] Pan YH, Zhang YJ, Cui J, Liu Y, McAllan BM, Liao CC, Zhang SY. Adaptation of phenylalanine and tyrosine catabolic pathway to hibernation in bats. PLoS One , 2013, 8(4): e62039. [64] Wang LF. Bats and viruses: a brief review. Virol Sin , 2009, 24(2): 93-99. [65] Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska JT, Gonzalez JP, Swanepoel R. Fruit bats as reservoirs of Ebola virus. Nature , 2005, 438(7068): 575-576. [66] Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY, Chan KH, Yuen KY. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA , 2005, 102(39): 14040-14045. [67] Wang LF, Walker PJ, Poon LL. Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’as reservoirs for emerging viruses? Curr Opin Virol , 2011, 1(6): 649-657. [68] Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W, Goldsmith CS, Gubler DJ, Roehrig JT, Eaton B, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BW. Nipah virus: a recently emergent deadly paramyxovirus. Science , 2000, 288(5470): 1432-1435. [69] Li WD, Shi ZL, Yu M, Ren WZ, Smith C, Epstein JH, Wang HZ, Crameri G, Hu ZH, Zhang HJ, Zhang JH, McEachern J, Field H, Daszak P, Eaton BT, Zhang SY, Wang LF. Bats are natural reservoirs of SARS- like coronaviruses. Science , 2005, 310(5748): 676-679. [70] Rouquet P, Froment JM, Bermejo M, Kilbourn A, Karesh W, Reed P, Kumulungui B, Yaba P, Delicat A, Rollin PE, Leroy EM. Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001- 2003. Emerg Infect Dis , 2005, 11(2): 283-290. [71] Xu HH, Liu Y, Meng FX, He BB, Han NJ, Li G, Rossiter SJ, Zhang SY. Multiple bursts of pancreatic ribonuclease gene duplication in insect-eating bats. Gene , 2013, 526(2): 112-117. [72] Zhao HB, Xu D, Zhang SY, Zhang JZ. Widespread losses of vomeronasal signal transduction in bats. Mol Biol Evol , 2011, 28(1): 7-12. (责任编委: 施 鹏) |
[1] | 孟玉,杨若林. 基于基因家族大小的比较研究脊椎动物的适应性进化[J]. 遗传, 2019, 41(2): 158-174. |
[2] | 冯平, 罗瑞健. 灵长类苦味受体基因研究进展[J]. 遗传, 2018, 40(2): 126-134. |
[3] | 薛宪词,于黎. 昆虫非遗传多型性研究进展[J]. 遗传, 2017, 39(9): 798-809. |
[4] | 朱林江, 李崎. 环境胁迫诱导的细胞适应性突变[J]. 遗传, 2014, 36(4): 327-335. |
[5] | 郎大田, 张亚平, 于黎. 核糖核酸酶基因超家族分子进化[J]. 遗传, 2014, 36(4): 316-326. |
[6] | 彭立新 孙菲菲 黄艳燕 黎贞崇. 酿酒酵母中亚硫酸盐转运基因SSU1的分子进化分析[J]. 遗传, 2013, 35(11): 1317-1326. |
[7] | 杨宇晖,梁旭方,方荣,彭敏燕,黄志东. 鳜脂蛋白脂酶基因SNP及其与食性驯化相关性分析[J]. 遗传, 2011, 33(9): 996-1002. |
[8] | 李铁民,杜波. CRISPR-Cas系统与细菌和噬菌体的共进化[J]. 遗传, 2011, 33(3): 213-218. |
[9] | 王香明,王丹巧,汪晓燕. 帕金森病相关基因功能研究进展[J]. 遗传, 2010, 32(8): 779-784. |
[10] | 齐小琼,高磊,王艇. CVNH 结构域进化分析及选择压力检测[J]. 遗传, 2010, 32(1): 87-94. |
[11] | 许先国,刘瑛,洪小珍,马开荣,朱发明,吕杭军,严力行. 中国人罕见的cisAB变异型分子机制分析[J]. 遗传, 2008, 30(10): 1295-1300. |
[12] | 杜娟,卢光琇. 维持胚胎干细胞不分化状态的分子机制[J]. 遗传, 2005, 27(5): 828-832. |
[13] | 刘东,朱利泉,王小佳. 芸薹属植物自交不亲和分子机制的研究进展[J]. 遗传, 2003, 25(2): 241-244. |
[14] | 柳淑芳,闫艳春,杜立新. Fec基因及BMPR-IB基因的突变特性与生物学意义[J]. 遗传, 2003, 25(1): 93-96. |
[15] | 张维道,赵茹. 两种鼠耳蝠LDH 同工酶的研究[J]. 遗传, 1992, 14(6): 12-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: