[1] 王燕,阮绪芝,孙晓东,龚坚. 从分子水平理解基因的显性和隐性. 医学理论与实践,2011,24(17):2059. [2] Myerowitz R. Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Human Mutation , 1997, 9 (3): 195-208. [3] Yamamoto F, Clausen H, White T, Marken J, Hakomori S. Molecular genetic basis of the histo-blood group ABO system. Nature , 1990, 345: 229-233. [4] Vuorio E, de Crombrugghe B. The family of collagen genes. Annu Rev Biochem , 1990, 59: 837-872. [5] Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem , 2002, 277(6): 4223-4231. [6] Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Körkkö J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat , 2007, 28: 209-221. [7] Sidell BD, O'Brien KM. When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. J Exp Biol , 2006, 209(Pt 10): 1791-1802. [8] RIGGS A, WELLS M. The oxygen equilibrium of sickle-cell hemoglobin. Biochim Biophys Acta , 1961, 50: 243-248. [9] Harrington DJ, Adachi K, Royer WE Jr. The high resolution crystal structure of deoxyhemoglobin S. J Mol Biol , 1997, 272(3): 398-407. [10] Wellems TE, Hayton K, Fairhurst RM. The impact of malaria parasitism: from corpuscles to communities. J Clin Invest , 2009, 119 (9): 2496-505. [11] Makani J, Komba AN, Cox SE, Oruo J, Mwamtemi K, Kitundu J, Magesa P, Rwezaula S, Meda E, Mgaya J, Pallangyo K, Okiro E, Muturi D, Newton CR, Fegan G, Marsh K, Williams TN. Malaria in patients with sickle cell anemia: burden, risk factors, and outcome at the outpatient clinic and during hospitalization. Blood , 2010, 115(2): 215-220. [12] Spyropoulos B. Tay-Sachs carriers and tuberculosis resistance. Nature , 1988, 331(6158):666. [13] Read AP, Strachan T. Human molecular genetics 2. New York: Wiley; 1999. ISBN 0-471-33061-2. Chapter 18: Cancer Genetics. [14] Halazonetis TD, Kandil AN. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J , 1993, 12(13): 5057-5064. [15] Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell , 1991, 65(5):765-774. [16] Zhang AT, Langley AR, Christov CP, Kheir E, Shafee T, Gardiner TJ, Krude T. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J Cell Sci , 2011, 124(Pt 12): 2058-2069. [17] Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science , 2005, 310(5755): 1817-1821. [18] Meltzer PS. Cancer genomics: small RNAs with big impacts. Nature , 2005, 435(7043):745-746. [19] Finer S, Holland ML, Nanty L, Rakyan VK. The hunt for the epiallele. Environ Mol Mutagen , 2011, 52(1): 1-11. [20] Vrieling H, Duhl DM, Millar SE, Miller KA, Barsh GS. Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. Proc Nat Acad Sci USA , 1994, 91: 5667-5671. [21] Duhl DM, Stevens ME, Vrieling H, Saxon PJ, Miller MW, Epstein CJ, Barsh GS. Pleiotropic effects of the mouse lethal yellow (A y) mutation explained by deletion of a maternally expressed gene and the simultaneous production of agouti fusion RNAs. Development , 1994, 120(6): 1695-1708. [22] Bultman SJ, Michaud EJ, Woychik RP. Molecular characterization of the mouse agouti locus. Cell , 1992, 24: 71(7): 1195-204. [23] Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem , 2003, 72 (1): 291-336. [24] Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet , 2008, 40 (12): 1413-1415. [25] Nembaware V, Lupindo B, Schouest K, Spillane C, Scheffler K, Seoighe C. Genome-wide survey of allele-specific splicing in humans. BMC Genomics , 2008, 9: 265. [26] Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL 3rd, Lee JJ, Tilghman SM, Gumbiner BM, Costantini F. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell , 1997, 90(1): 181-192. [27] Vasicek TJ, Zeng L, Guan XJ, Zhang T, Costantini F, Tilghman SM. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics , 1997, 147(2):777-786. [28] Lu Z, Liu W, Huang H, He Y, Han Y, Rui Y, Wang Y, Li Q, Ruan K, Ye Z, Low BC, Meng A, Lin SC. Protein encoded by the Axin(Fu) allele effectively down-regulates Wnt signaling but exerts a dominant negative effect on c-Jun N-terminal kinase signaling. J Biol Chem , 2008, 283(19):13132-13139. [29] Flood WD, Ruvinsky A. Alternative splicing and expressivity of the Axin(Fu) allele in mice. Heredity (Edinb). 2001, 87(Pt 2):146-152. [30] Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, Whitelaw E. Transgenerational inheritance of epigenetic states at the murine Axin Fu allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA , 2003, 100(5):2538-2543. [31] Kunte K, Zhang W, Tenger-Trolander A, Palmer DH, Martin A, Reed RD, Mullen SP, Kronforst MR. doublesex is a mimicry supergene. Nature , 2014, 507(7491): 229-32. [32] Du X, Wang J, Zhu H, Rinaldo L, Lamar KM, Palmenberg AC, Hansel C, Gomez CM. Second cistron in CACNA1A gene encodes a transcription factor mediating cerebellar development and SCA6. Cell , 2013, 154:118-133. [33] Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. Metastable epialleles in mammals. Trends Genet , 2002, 18: 348-351. [34] Rakyan VK, Preis J, Morgan HD, Whitelaw E. The marks, mechanisms and memory of epigenetic states in mammals. Biochem J , 2001, 356: 1-10. [35] Dolinoy DC, Weinhouse C, Jones TR, Rozek LS, Jirtle RL. Variable histone modifications at the Avy metastable epiallele. Epigenetics , 2010, 5(7): 637-644. [36] Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol , 2003, 23(15): 5293-5300. [37] Cockett NE, Jackson SP, Shay TL, Nielsen D, Moore SS, Steele MR, Barendse W, Green RD, Georges M. Chromosomal localisation of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proc Natl Acad Sci USA , 1994, 91(8): 3019-3023. [38] Cockett NE, Jackson SP, Shay TL, Farnir F, Berghmans S, Snowder GD, Nielsen DM, Georges M. Polar overdominance at the ovine callipyge locus. Science , 1996, 273(5272): 236-238. [39] Freking BA, Murphy SK, Wylie AA, Rhodes SJ, Keele JW, Leymaster KA, Jirtle RL, Smith TP. Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res , 2002, 12(10): 1496-1506. [40] Smit M, Segers K, Carrascosa LG, Shay T, Baraldi F, Gyapay G, Snowder G, Georges M, Cockett N, Charlier C. Mosaicism of Solid Gold supports the causality of a non-coding A to G transition in the determinism of the callipyge phenotype. Genetics , 2003, 163(1): 453-456. [41] Davis E, Jensen CH, Schroder HD, Farnir F, Shay-Hadfield T, Kliem A, Cockett N, Georges M, Charlier C. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype. Curr Biol , 2004, 14(20): 1858-1862. [42] Georges M, Charlier C, Smit M, Davis E, Shay T, Tordoir X, Takeda H, Caiment F, Cockett N. Toward molecular understanding of polar overdominance at the ovine callipyge locus. Cold Spring Harb Symp Quant Biol , 2004, 69: 477-483. [43] Murphy SK, Nolan CM, Huang Z, Kucera KS, Freking BA, Smith TP, Leymaster KA, Weidman JR, Jirtle RL. Callipyge mutation affects gene expression in cis: a potential role for chromatin structure. Genome Res , 2006, 16(3): 340-346. [44] Takeda H, Caiment F, Smit M, Hiard S, Tordoir X, Cockett N, Georges M, Charlier C. The callipyge mutation enhances bidirectional long-range DLK1-GTL2 intergenic transcription in cis. Proc Natl Acad Sci USA , 2006, 103(21): 8119-8124. [45] De Gregorio L, Jinnah HA, Harris JC, Nyhan WL, Schretlen DJ, Trombley LM, O'Neill JP. Lesch-Nyhan disease in a female with a clinically normal monozygotic twin. Mol Genet Metab , 2005, 85: 70-77. |