遗传 ›› 2022, Vol. 44 ›› Issue (6): 449-465.doi: 10.16288/j.yczz.22-094
收稿日期:
2022-04-01
修回日期:
2022-05-06
出版日期:
2022-06-20
发布日期:
2022-05-07
通讯作者:
金花
E-mail:15689312865@163.com;huajin@bit.edu.cn
作者简介:
王娟,在读硕士研究生,专业方向:生物学/生物化学与分子生物学。E-mail: 基金资助:
Juan Wang(), Yuening Yang, Weilan Piao, Hua Jin()
Received:
2022-04-01
Revised:
2022-05-06
Online:
2022-06-20
Published:
2022-05-07
Contact:
Jin Hua
E-mail:15689312865@163.com;huajin@bit.edu.cn
Supported by:
摘要:
RNA尿苷酸化作为一种高效的转录后基因调控方式,几乎存在于所有的真核生物中。末端尿苷酸转移酶(terminal uridylyltransferase, TUTase)负责催化生物体内snRNA、miRNA、mRNA和其他ncRNA的单尿苷酸化(monouridylation)和寡尿苷酸化(oligouridylation)。研究表明,对非编码RNA中间产物的单尿苷酸化可以改变其最终产物和生成速度,而寡尿苷酸化常用于时空特异性降解特定RNA、清除质量异常的RNA和病毒RNA。尿苷酸化通过这两种方式调控RNA的生成和降解,进而影响生物的生殖和早期发育、细胞凋亡、肿瘤发生以及病毒感染等多个重要的生物过程。本文对尿苷酸化的现有研究成果进行综述,介绍了RNA 3′末端检测技术,重点阐述了尿苷酸化调控基因表达的分子机制和其在RNA监控以及多种生物过程中的关键性作用,最后讨论了待解决的科学问题和未来研究的重要方向,旨在为抗病毒和抗肿瘤的临床治疗提供新思路。
王娟, 杨悦宁, 朴威兰, 金花. 尿苷酸化:一种重要的细胞内RNA监控方式[J]. 遗传, 2022, 44(6): 449-465.
Juan Wang, Yuening Yang, Weilan Piao, Hua Jin. Uridylation: a vital way for cellular RNA surveillance[J]. Hereditas(Beijing), 2022, 44(6): 449-465.
表1
不同物种中末端尿苷酸转移酶的生化功能和作用底物"
蛋白家族及名称 | 结构域 | 种属 | 功能 | 靶标RNA |
---|---|---|---|---|
CID1 | 粟酒裂 殖酵母 | 寡尿苷酸化 | mRNA miRNA siRNA U6 snRNA | |
USIP-1 | 线虫 | 寡尿苷酸化 | U6 snRNA | |
PUP-2 | 线虫 | 寡尿苷酸化 | mRNA pre-miRNA siRNA | |
CDE-1 | 线虫 | 寡尿苷酸化 | siRNA Viral RNA | |
Tailor | 果蝇 | 单尿苷酸化 寡尿苷酸化 聚腺苷酸化 | pre-miRNA 5S RNA snRNA snoRNA tRNA RNase MRP | |
Mkg-p (Monkey king protein) | 果蝇 | 寡尿苷酸化 | mRNA | |
TUT4 (TENT3A、PAPD3、ZCCHC11) | 人类 | 寡尿苷酸化 单尿苷酸化 尿苷酸化 | mRNA histone mRNA LINE-1 mRNA pre-miRNA miRNA Viral RNA Pre-rRNA Pol Ⅲ-ncRNA | |
TUT7 (TENT3B、PAPD6、ZCCHC6) | 人类 | 寡尿苷酸化 单尿苷酸化 尿苷酸化 | 同TUT4靶标 | |
TUT1 (Star-PAP、U6 TUTase、PAPD2) | 人类 | 寡尿苷酸化 聚腺苷酸化 | U6 snRNA mRNA |
[1] |
Stewart M. Polyadenylation and nuclear export of mRNAs. J Biol Chem, 2019, 294(9):2977-2987.
doi: 10.1074/jbc.REV118.005594 pmid: 30683695 |
[2] |
Weill L, Belloc E, Bava FA, Méndez R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nat Struct Mol Biol, 2012, 19(6):577-585.
doi: 10.1038/nsmb.2311 |
[3] |
Norbury CJ. Cytoplasmic RNA: a case of the tail wagging the dog. Nat Rev Mol Cell Biol, 2013, 14(10):643-653.
doi: 10.1038/nrm3645 |
[4] |
Reyes JM, Ross PJ. Cytoplasmic polyadenylation in mammalian oocyte maturation. Wiley Interdiscip Rev RNA, 2016, 7(1):71-89.
doi: 10.1002/wrna.1316 |
[5] |
Chang H, Yeo J, Kim JG, Kim H, Lim J, Lee M, Kim HH, Ohk J, Jeon HY, Lee H, Jung H, Kim KW, Kim VN,. Terminal Uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos. Mol Cell, 2018, 70(1): 72-82.e7.
doi: 10.1016/j.molcel.2018.03.004 |
[6] | Beta RAA, Balatsos NAA. Tales around the clock: poly(A) tails in circadian gene expression. Wiley Interdiscip Rev RNA, 2018, 9(5):e1484. |
[7] |
Le Pen J, Jiang H, Di Domenico T, Kneuss E, Kosalka J, Leung C, Morgan M, Much C, Rudolph KLM, Enright AJ, O'Carroll D,Wang D,Miska EA. Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nat Struct Mol Biol, 2018, 25(9):778-786.
doi: 10.1038/s41594-018-0106-9 |
[8] |
Liu YS, Nie H, Lu F. Dynamic RNA 3' uridylation and guanylation during mitosis. iScience, 2020, 23(8):101402.
doi: 10.1016/j.isci.2020.101402 |
[9] |
Jupin I, Bouzoubaa S, Richards K, Jonard G, Guilley H. Multiplication of beet necrotic yellow vein virus RNA 3 lacking a 3' poly(A) tail is accompanied by reappearance of the poly(A) tail and a novel short U-rich tract preceding it. Virology, 1990, 178(1):281-284.
pmid: 2389554 |
[10] |
Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, Blelloch R, Schroth GP, Nusbaum C, Bartel DP. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev, 2010, 24(10):992-1009.
doi: 10.1101/gad.1884710 |
[11] |
Newman MA, Mani V, Hammond SM. Deep sequencing of microRNA precursors reveals extensive 3' end modification. RNA, 2011, 17(10):1795-1803.
doi: 10.1261/rna.2713611 |
[12] |
Shen B, Goodman HM. Uridine addition after microRNA- directed cleavage. Science, 2004, 306(5698):997.
doi: 10.1126/science.1103521 |
[13] |
Martin G, Keller W. RNA-specific ribonucleotidyl transferases. RNA, 2007, 13(11):1834-1849.
doi: 10.1261/rna.652807 |
[14] |
Wang SW, Norbury C, Harris AL, Toda T. Caffeine can override the S-M checkpoint in fission yeast. J Cell Sci, 1999, 112(Pt 6):927-937.
doi: 10.1242/jcs.112.6.927 |
[15] |
Rissland OS, Norbury CJ. The Cid1 poly(U) polymerase. Biochim Biophys Acta, 2008, 1779(4):286-294.
doi: 10.1016/j.bbagrm.2008.03.003 pmid: 18371314 |
[16] |
Meijer HA, Bushell M, Hill K, Gant TW, Willis AE, Jones P,de Moor CH. A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Res, 2007, 35(19):e132.
doi: 10.1093/nar/gkm830 pmid: 17933768 |
[17] |
Du L, Richter JD. Activity-dependent polyadenylation in neurons. RNA, 2005, 11(9):1340-1347.
doi: 10.1261/rna.2870505 |
[18] |
Beilharz TH, Preiss T. Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA, 2007, 13(7):982-997.
pmid: 17586758 |
[19] |
Chang H, Lim J, Ha MJ, Kim VN. TAIL-seq: genome-wide determination of poly(A) tail length and 3' end modifications. Mol Cell, 2014, 53(6):1044-1052.
doi: 10.1016/j.molcel.2014.02.007 |
[20] |
Lim J, Lee M, Son A, Chang H, Kim VN. mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to- embryo development. Genes Dev, 2016, 30(14):1671-1682.
doi: 10.1101/gad.284802.116 |
[21] |
Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature, 2014, 508(7494):66-71.
doi: 10.1038/nature13007 |
[22] |
Eisen TJ, Eichhorn SW, Subtelny AO, Lin KS, McGeary SE, Gupta S, Bartel DP. The dynamics of cytoplasmic mRNA metabolism. Mol Cell, 2020, 77(4): 786- 799.e10.
doi: 10.1016/j.molcel.2019.12.005 |
[23] |
Harrison PF, Powell DR, Clancy JL, Preiss T, Boag PR, Traven A, Seemann T, Beilharz TH. PAT-seq: a method to study the integration of 3'-UTR dynamics with gene expression in the eukaryotic transcriptome. RNA, 2015, 21(8):1502-1510.
doi: 10.1261/rna.048355.114 pmid: 26092945 |
[24] |
Woo YM, Kwak Y, Namkoong S, Kristjánsdóttir K, Lee SH, Lee JH, Kwak H. TED-seq identifies the dynamics of poly(A) length during ER stress. Cell Rep, 2018, 24(13): 3630-3641.e7.
doi: S2211-1247(18)31388-3 pmid: 30257221 |
[25] |
Legnini I, Alles J, Karaiskos N, Ayoub S, Rajewsky N. FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat Methods, 2019, 16(9):879-886.
doi: 10.1038/s41592-019-0503-y pmid: 31384046 |
[26] |
Liu YS, Wu KL, Shao FH, Nie H, Zhang JY, Li C, Hou ZZ, Wang JQ, Zhou B, Zhao H, Lu FL. Dynamics of poly(A) tail length and non-A residues during the human oocyte-to-embryo transition. BioRxiv, 2021, doi: 10.1101/2021.08.29.458075.
doi: 10.1101/2021.08.29.458075 |
[27] |
Liu YS, Nie H, Liu HX, Lu, FL. Poly(A) inclusive RNA isoform sequencing (PAIso-seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nat Commun, 2019, 10(1):5292.
doi: 10.1038/s41467-019-13228-9 |
[28] |
Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Razaghi R, Zuzarte PC, Gilpatrick T, Payne A, Quick J, Sadowski N, Holmes N,de Jesus JG,Jones KL,Soulette CM,Snutch TP,Loman N,Paten B,Loose M,Simpson JT,Olsen HE,Brooks AN,Akeson M,Timp W,. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods, 2019, 16(12):1297-1305.
doi: 10.1038/s41592-019-0617-2 |
[29] |
Liu YS, Nie H, Zhang YW, Lu FL, Wang J. Comprehensive analysis of mRNA poly(A) tail reveals complex and conserved regulation. BioRxiv, 2021, doi: 10.1101/2021.08.29.458068.
doi: 10.1101/2021.08.29.458068 |
[30] |
Liu YS, Nie H, Wang L-Y, Wu S, Li W, Zhou Q, Wang JQ, Lu FL. Abundant non-A residues in the poly(A) tail orchestrate the mouse oocyte-to-embryo transition. BioRxiv, 2021, doi: 10.1101/2021.08.29.458077.
doi: 10.1101/2021.08.29.458077 |
[31] |
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell, 2009, 138(4):696-708.
doi: 10.1016/j.cell.2009.08.002 |
[32] |
Rissland OS, Mikulasova A, Norbury CJ. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol Cell Biol, 2007, 27(10):3612-3624.
doi: 10.1128/MCB.02209-06 pmid: 17353264 |
[33] |
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772):901-906.
doi: 10.1038/35002607 |
[34] |
Nam Y, Chen C, Gregory RI, Chou JJ, Sliz P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell, 2011, 147(5):1080-1091.
doi: 10.1016/j.cell.2011.10.020 |
[35] |
Loughlin FE, Gebert LF, Towbin H, Brunschweiger A, Hall J, Allain FH. Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nat Struct Mol Biol, 2011, 19(1):84-89.
doi: 10.1038/nsmb.2202 pmid: 22157959 |
[36] |
Ustianenko D, Chiu HS, Treiber T, Weyn-Vanhentenryck SM, Treiber N, Meister G, Sumazin P, Zhang CL. LIN28 selectively modulates a subclass of let-7 microRNAs. Mol Cell, 2018, 71(2): 271-283.
doi: S1097-2765(18)30504-5 pmid: 30029005 |
[37] |
Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol, 2009, 16(10):1021-1025.
doi: 10.1038/nsmb.1676 pmid: 19713958 |
[38] |
Liu XH, Zheng Q, Vrettos N, Maragkakis M, Alexiou P, Gregory BD, Mourelatos Z. A MicroRNA precursor surveillance system in quality control of MicroRNA synthesis. Mol Cell, 2014, 55(6):868-879.
doi: 10.1016/j.molcel.2014.07.017 |
[39] |
Lehrbach NJ, Armisen J, Lightfoot HL, Murfitt KJ, Bugaut A, Balasubramanian S, Miska EA. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol, 2009, 16(10):1016-1020.
doi: 10.1038/nsmb.1675 pmid: 19713957 |
[40] |
Kim B, Ha M, Loeff L, Chang H, Simanshu DK, Li SS, Fareh M, Patel DJ, Joo C, Kim VN. TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. EMBO J, 2015, 34(13):1801-1815.
doi: 10.15252/embj.201590931 |
[41] |
Heo I, Ha M, Lim J, Yoon MJ, Park JE, Kwon SC, Chang H, Kim VN. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell, 2012, 151(3):521-532.
doi: 10.1016/j.cell.2012.09.022 |
[42] |
Reimão-Pinto MM, Ignatova V, Burkard TR, Hung JH, Manzenreither RA, Sowemimo I, Herzog VA, Reichholf B, Fariña-Lopez S, Ameres SL. Uridylation of RNA hairpins by tailor confines the emergence of microRNAs in drosophila. Mol Cell, 2015, 59(2):203-216.
doi: 10.1016/j.molcel.2015.05.033 pmid: 26145176 |
[43] |
Reimão-Pinto MM, Manzenreither RA, Burkard TR, Sledz P, Jinek M, Mechtler K, Ameres SL. Molecular basis for cytoplasmic RNA surveillance by uridylation- triggered decay in Drosophila. EMBO J, 2016, 35(22):2417-2434.
pmid: 27729457 |
[44] |
Bortolamiol-Becet D, Hu FQ, Jee D, Wen J, Okamura K, Lin CJ, Ameres SL, Lai EC. Selective suppression of the splicing-mediated microRNA pathway by the terminal uridyltransferase tailor. Mol Cell, 2015, 59(2):217-228.
doi: 10.1016/j.molcel.2015.05.034 pmid: 26145174 |
[45] |
Liu XH, Zheng Q, Vrettos N, Maragkakis M, Alexiou P, Gregory BD, Mourelatos Z. A MicroRNA precursor surveillance system in quality control of MicroRNA synthesis. Mol Cell, 2014, 55(6):868-879.
doi: 10.1016/j.molcel.2014.07.017 |
[46] |
Ro S, Park C, Young D, Sanders KM, Yan W. Tissue- dependent paired expression of miRNAs. Nucleic Acids Res, 2007, 35(17):5944-5953.
doi: 10.1093/nar/gkm641 |
[47] |
Lee HY, Doudna JA. TRBP alters human precursor microRNA processing in vitro. RNA, 2012, 18(11):2012-2019.
doi: 10.1261/rna.035501.112 |
[48] |
Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell, 2015, 57(3):397-407.
doi: 10.1016/j.molcel.2014.11.030 pmid: 25557550 |
[49] |
Kim H, Kim J, Yu S, Lee YY, Park J, Choi RJ, Yoon SJ, Kang SG, Kim VN,. A mechanism for microRNA arm switching regulated by uridylation. Mol Cell, 2020, 78(6): 1224-1236.e5.
doi: 10.1016/j.molcel.2020.04.030 |
[50] |
Cao LQ, Xie BH, Yang XW, Liang HH, Jiang XF, Zhang DW, Xue P, Chen D, Shao Z. MiR-324-5p suppresses hepatocellular carcinoma cell invasion by counteracting ECM degradation through post-transcriptionally downregulating ETS1 and SP1. PLoS One, 2015, 10(7):e0133074.
doi: 10.1371/journal.pone.0133074 |
[51] |
Tuo H, Wang YF, Wang L, Yao BW, Li Q, Wang C, Liu ZK, Han SS, Yin GZ, Tu K, Liu QG. MiR-324-3p promotes tumor growth through targeting DACT1 and activation of Wnt/β-catenin pathway in hepatocellular carcinoma. Oncotarget, 2017, 8(39):65687-65698.
doi: 10.18632/oncotarget.20058 |
[52] |
Morin RD, O'Connor MD,Griffith M,Kuchenbauer F,Delaney A,Prabhu AL,Zhao YJ,McDonald H,Zeng T,Hirst M,Eaves CJ,Marra MA,. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res, 2008, 18(4):610-621.
doi: 10.1101/gr.7179508 pmid: 18285502 |
[53] |
Fernandez-Valverde SL, Taft RJ, Mattick JS. Dynamic isomiR regulation in Drosophila development. RNA, 2010, 16(10):1881-1888.
doi: 10.1261/rna.2379610 pmid: 20805289 |
[54] |
Burroughs AM, Ando Y,de Hoon MJ,Tomaru Y,Suzuki H,Hayashizaki Y,Daub CO,. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol, 2011, 8(1):158-177.
doi: 10.4161/rna.8.1.14300 |
[55] |
Westholm JO, Ladewig E, Okamura K, Robine N, Lai EC. Common and distinct patterns of terminal modifications to mirtrons and canonical microRNAs. RNA, 2012, 18(2):177-192.
doi: 10.1261/rna.030627.111 pmid: 22190743 |
[56] |
Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, Dennis LM, Krouse MA, Webster PJ, Tewari M. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res, 2011, 21(9):1450-1461.
doi: 10.1101/gr.118059.110 |
[57] |
Knouf EC, Wyman SK, Tewari M. The human TUT1 nucleotidyl transferase as a global regulator of microRNA abundance. PLoS One, 2013, 8(7):e69630.
doi: 10.1371/journal.pone.0069630 |
[58] |
Tu B, Liu L, Xu C, Zhai JX, Li SB, Lopez MA, Zhao YY, Yu Y, Ramachandran V, Ren GD, Yu B, Li SG, Meyers BC, Mo BX, Chen XM. Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet, 2015, 11(4):e1005119.
doi: 10.1371/journal.pgen.1005119 |
[59] |
Kamminga LM, Luteijn MJ,den Broeder MJ,Redl S,Kaaij LJ,Roovers EF,Ladurner P,Berezikov E,Ketting RF. Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J, 2010, 29(21):3688-3700.
doi: 10.1038/emboj.2010.233 pmid: 20859253 |
[60] |
Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng ZP, Zamore PD. Target RNA-directed trimming and tailing of small silencing RNAs. Science, 2010, 328(5985):1534-1539.
doi: 10.1126/science.1187058 |
[61] |
de la Mata M, Gaidatzis D, Vitanescu M, Stadler MB, Wentzel C, Scheiffele P, Filipowicz W, Großhans H. Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep, 2015, 16(4):500-511.
doi: 10.15252/embr.201540078 |
[62] | Park JH, Shin SY, Shin C. Non-canonical targets destabilize microRNAs in human Argonautes. Nucleic Acids Res, 2017, 45(4):1569-1583. |
[63] |
Haas G, Cetin S, Messmer M, Chane-Woon-Ming B,Terenzi O,Chicher J,Kuhn L,Hammann P,Pfeffer S. Identification of factors involved in target RNA- directed microRNA degradation. Nucleic Acids Res, 2016, 44(6):2873-2887.
doi: 10.1093/nar/gkw040 |
[64] |
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell, 2004, 15(2):185-197.
doi: 10.1016/j.molcel.2004.07.007 pmid: 15260970 |
[65] |
De N, Young L, Lau PW, Meisner NC, Morrissey DV, MacRae IJ. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2. Mol Cell, 2013, 50(3):344-355.
doi: 10.1016/j.molcel.2013.04.001 |
[66] |
Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, Ivanov AR, Wolf DA, Mizgerd JP. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol, 2009, 11(9):1157-1163.
doi: 10.1038/ncb1931 |
[67] |
Jones MR, Blahna MT, Kozlowski E, Matsuura KY, Ferrari JD, Morris SA, Powers JT, Daley GQ, Quinton LJ, Mizgerd JP. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival. PLoS Genet, 2012, 8(11):e1003105.
doi: 10.1371/journal.pgen.1003105 |
[68] |
Yang A, Bofill-De Ros X, Shao TJ, Jiang MJ, Li K, Villanueva P, Dai L, Gu S. 3' Uridylation confers miRNAs with non-canonical target repertoires. Mol Cell, 2019, 75(3): 511-522.e4.
doi: 10.1016/j.molcel.2019.05.014 |
[69] |
Vidaver RM, Fortner DM, Loos-Austin LS, Brow DA. Multiple functions of Saccharomyces cerevisiae splicing protein Prp24 in U6 RNA structural rearrangements. Genetics, 1999, 153(3):1205-1218.
doi: 10.1093/genetics/153.3.1205 pmid: 10545453 |
[70] |
Karaduman R, Fabrizio P, Hartmuth K, Urlaub H, Lührmann R. RNA structure and RNA-protein interactions in purified yeast U6 snRNPs. J Mol Biol, 2006, 356(5):1248-1262.
pmid: 16410014 |
[71] |
Urlaub H, Hartmuth K, Lührmann R. A two-tracked approach to analyze RNA-protein crosslinking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods, 2002, 26(2):170-181.
doi: 10.1016/S1046-2023(02)00020-8 |
[72] |
Rüegger S, Miki TS, Hess D, Großhans H. The ribonucleotidyl transferase USIP-1 acts with SART3 to promote U6 snRNA recycling. Nucleic Acids Res, 2015, 43(6):3344-3357.
doi: 10.1093/nar/gkv196 pmid: 25753661 |
[73] |
Trippe R, Richly H, Benecke BJ. Biochemical characterization of a U6 small nuclear RNA-specific terminal uridylyltransferase. Eur J Biochem, 2003, 270(5):971-980.
pmid: 12603330 |
[74] |
Trippe R, Guschina E, Hossbach M, Urlaub H, Lührmann R, Benecke BJ. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA, 2006, 12(8):1494-1504.
pmid: 16790842 |
[75] |
Licht K, Medenbach J, Lührmann R, Kambach C, Bindereif A. 3'-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins. RNA, 2008, 14(8):1532-1538.
doi: 10.1261/rna.1129608 |
[76] |
Terns MP, Lund E, Dahlberg JE. 3'-end-dependent formation of U6 small nuclear ribonucleoprotein particles in Xenopus laevis oocyte nuclei. Mol Cell Biol, 1992, 12(7):3032-3040.
doi: 10.1128/mcb.12.7.3032-3040.1992 pmid: 1535684 |
[77] |
Yashiro Y, Tomita K. Function and regulation of human terminal uridylyltransferases. Front Genet, 2018, 9:538.
doi: 10.3389/fgene.2018.00538 pmid: 30483311 |
[78] |
Rissland OS, Norbury CJ. Decapping is preceded by 3' uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol, 2009, 16(6):616-623.
doi: 10.1038/nsmb.1601 pmid: 19430462 |
[79] |
Mullen TE, Marzluff WF. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5' to 3' and 3' to 5'. Genes Dev, 2008, 22(1):50-65.
doi: 10.1101/gad.1622708 |
[80] |
Lackey PE, Welch JD, Marzluff WF. TUT7 catalyzes the uridylation of the 3' end for rapid degradation of histone mRNA. RNA, 2016, 22(11):1673-1688.
doi: 10.1261/rna.058107.116 |
[81] |
Lim J, Ha M, Chang H, Kwon SC, Simanshu DK, Patel DJ, Kim VN. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell, 2014, 159(6):1365-1376.
doi: 10.1016/j.cell.2014.10.055 |
[82] |
Chung CZ, Jaramillo JE, Ellis MJ, Bour DYN, Seidl LE, Jo DHS, Turk MA, Mann MR, Bi Y, Haniford DB, Duennwald ML, Heinemann IU. RNA surveillance by uridylation-dependent RNA decay in Schizosaccharomyces pombe. Nucleic Acids Res, 2019, 47(6):3045-3057.
doi: 10.1093/nar/gkz043 |
[83] |
Morgan M, Much C, DiGiacomo M,Azzi C,Ivanova I,Vitsios DM,Pistolic J,Collier P,Moreira PN,Benes V,Enright AJ,O'Carroll D. mRNA 3' uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature, 2017, 548(7667):347-351.
doi: 10.1038/nature23318 |
[84] |
Thomas MP, Liu X, Whangbo J, McCrossan G,Sanborn KB,Basar E,Walch M,Lieberman J,. Apoptosis triggers specific, rapid, and global mRNA decay with 3' uridylated intermediates degraded by DIS3L2. Cell Rep, 2015, 11(7):1079-1089.
doi: 10.1016/j.celrep.2015.04.026 |
[85] |
Faulkner GJ, Garcia-Perez JL. L1 mosaicism in mammals: extent, effects, and evolution. Trends Genet, 2017, 33(11):802-816.
doi: 10.1016/j.tig.2017.07.004 |
[86] |
Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet, 2009, 10(10):691-703.
doi: 10.1038/nrg2640 |
[87] | Kou YN, Cen S, Li XY. Research and application on LINE-1 in diagnosis and treatment of tumorigenesis. Hereditas (Beijing), 2021, 43(6):571-579. |
寇艳妮, 岑山, 李晓宇. LINE-1在肿瘤早期诊断和治疗中的研究与应用. 遗传, 2021, 43(6):571-579. | |
[88] |
Warkocki Z, Krawczyk PS, Adamska D, Bijata K, Garcia-Perez JL, Dziembowski A . Uridylation by TUT4/7 restricts retrotransposition of human LINE-1s. Cell, 2018, 174(6): 1537-1548.e29.
doi: 10.1016/j.cell.2018.07.022 |
[89] |
Ustianenko D, Pasulka J, Feketova Z, Bednarik L, Zigackova D, Fortova A, Zavolan M, Vanacova S. TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs. EMBO J, 2016, 35(20):2179-2191.
pmid: 27647875 |
[90] |
Pirouz M, Du P, Munafò M, Gregory RI. Dis3l2- mediated decay is a quality control pathway for noncoding RNAs. Cell Rep, 2016, 16(7):1861-1873.
doi: 10.1016/j.celrep.2016.07.025 pmid: 27498873 |
[91] |
He BX, Zhao ZY, Cai QD, Zhang YQ, Zhang PF, Shi S, Xie H, Peng X, Yin W, Tao YG, Wang X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci, 2020, 16(14):2628-2647.
doi: 10.7150/ijbs.47203 |
[92] |
Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/ let-7 pathway in cancer. Front Genet, 2017, 8:31.
doi: 10.3389/fgene.2017.00031 pmid: 28400788 |
[93] |
Lee H, Han S, Kwon CS, Lee D. Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell, 2016, 7(2):100-113.
doi: 10.1007/s13238-015-0212-y |
[94] |
Hertel J, Bartschat S, Wintsche A, Otto C, Stadler PF. Evolution of the let-7 microRNA family. RNA Biol, 2012, 9(3):231-241.
doi: 10.4161/rna.18974 pmid: 22617875 |
[95] |
Akao Y, Nakagawa Y, Naoe T. Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull, 2006, 29(5):903-906.
doi: 10.1248/bpb.29.903 |
[96] |
Büssing I, Slack FJ, Grosshans H. Let-7 microRNAs in development, stem cells and cancer. Trends Mol Med, 2008, 14(9):400-409.
doi: 10.1016/j.molmed.2008.07.001 pmid: 18674967 |
[97] |
Yu FY, Yao HR, Zhu PC, Zhang XQ, Pan QH, Gong C, Huang YJ, Hu XQ, Su FX, Lieberman J, Song E. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007, 131(6):1109-1123.
doi: 10.1016/j.cell.2007.10.054 |
[98] |
Barh D, Malhotra R, Ravi B, Sindhurani P. MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol, 2010, 17(1):70-80.
doi: 10.3747/co.v17i1.356 pmid: 20179807 |
[99] |
Roos M, Pradère U, Ngondo RP, Behera A, Allegrini S, Civenni G. Zagalak JA, Marchand JR, Menzi M, Towbin H, Scheuermann J, Neri D, Caflisch A, Catapano CV, Ciaudo C, Hall J. A small-molecule inhibitor of Lin28. ACS Chem Biol, 2016, 11(10):2773-2781.
doi: 10.1021/acschembio.6b00232 |
[100] |
Lin SB, Gregory RI. Identification of small molecule inhibitors of Zcchc11 TUTase activity. RNA Biol, 2015, 12(8):792-800.
doi: 10.1080/15476286.2015.1058478 |
[101] |
Lightfoot HL, Miska EA, Balasubramanian S. Identification of small molecule inhibitors of the Lin28- mediated blockage of pre-let-7g processing. Org Biomol Chem, 2016, 14(43):10208-10216.
doi: 10.1039/c6ob01945e pmid: 27731469 |
[102] |
Tsai KW, Leung CM, Lo YH, Chen TW, Chan WC, Yu SY, Tu YT, Lam HC, Li SC, Ger LP, Liu WS, Chang HT. Arm selection preference of microRNA-193a varies in breast cancer. Sci Rep, 2016, 6:28176.
doi: 10.1038/srep28176 |
[103] | Li SC, Liao YL, Ho MR, Tsai KW, Lai CH, Lin WC. miRNA arm selection and isomiR distribution in gastric cancer. BMC Genomics, 2012, 13 Suppl 1(Suppl 1):S13. |
[104] |
Chen L, Sun HY, Wang CL, Yang Y, Zhang M, Wong G. MiRNA arm switching identifies novel tumour biomarkers. EBioMedicine, 2018, 38:37-46.
doi: 10.1016/j.ebiom.2018.11.003 |
[105] |
Medhi R, Price J, Furlan G, Gorges B, Sapetschnig A, Miska EA. RNA uridyl transferases TUT4/7 differentially regulate miRNA variants depending on the cancer cell type. RNA, 2022, 28(3):353-370.
doi: 10.1261/rna.078976.121 |
[106] |
Morgan M, Kabayama Y, Much C, Ivanova I, Di Giacomo M, Auchynnikava T, Monahan JM, Vitsios DM, Vasiliauskaitė L, Comazzetto S, Rappsilber J, Allshire RC, Porse BT, Enright AJ, O'Carroll D. A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis. Cell Res, 2019, 29(3):221-232.
doi: 10.1038/s41422-018-0128-1 |
[107] |
Yeo J, Kim VN. U-tail as a guardian against invading RNAs. Nat Struct Mol Biol, 2018, 25(10):903-905.
doi: 10.1038/s41594-018-0139-0 |
[108] |
Rehwinkel J. Is anti-viral defence the evolutionary origin of mRNA turnover?(Comment on DOI)10.1002/bies.201600100. Bioessays, 2016, 38(9): 817.
doi: 10.1002/bies.201600140 pmid: 27477874 |
[109] |
Hamid FM, Makeyev EV. Exaptive origins of regulated mRNA decay in eukaryotes. Bioessays, 2016, 38(9):830-838.
doi: 10.1002/bies.201600100 |
[110] | Sun LR, Zhang F, Guo F, Liu F, Kulsuptrakul J, Puschnik A, Gao M, Rijnbrand R, Sofia M, Block T, Zhou TL. The dihydroquinolizinone compound RG7834 inhibits the polyadenylase function of PAPD5 and PAPD7 and accelerates the degradation of matured hepatitis B virus surface protein mRNA. Antimicrob Agents Chemother, 2020, 65(1):e00640-e00620. |
[111] |
Kim D, Lee Y-S, Jung S-J, Yeo J, Seo JJ, Lee Y-Y, Lim J, Chang H, Song J, Yang J, Kim J-S, Jung GH, Ahn K, Kim VN. Viral hijacking of the TENT4-ZCCHC14 complex protects viral RNAs via mixed tailing. Nat Struct Mol Biol, 2020, 27(6):581-588.
doi: 10.1038/s41594-020-0427-3 |
[112] |
Mueller H, Wildum S, Luangsay S, Walther J, Lopez A, Tropberger P, Ottaviani G, Lu W, Parrott NJ, Zhang JD, Schmucki R, Racek T, Hoflack JC, Kueng E, Point F, Zhou X, Steiner G, Lütgehetmann M, Rapp G, Volz T, Dandri M, Yang S, Young JAT, Javanbakht H. A novel orally available small molecule that inhibits hepatitis B virus expression. J Hepatol, 2018, 68(3):412-420.
doi: S0168-8278(17)32393-0 pmid: 29079285 |
[113] |
Liu F, Lee ACH, Guo F, Kondratowicz AS, Micolochick Steuer HM, Miller A, Bailey LD, Wang XH, Chen S, Kultgen SG, Cuconati A, Cole AG, Gotchev D, Dorsey BD, Rijnbrand R, Lam AM, Sofia MJ, Gao M. Host poly(A) polymerases PAPD5 and PAPD7 provide two layers of protection that ensure the integrity and stability of hepatitis B virus RNA. J Virol, 2021, 95(18):e0057421.
doi: 10.1128/JVI.00574-21 |
[114] |
Mueller H, Lopez A, Tropberger P, Wildum S, Schmaler J, Pedersen L, Han XC, Wang YG, Ottosen S, Yang S, Young JAT, Javanbakht H. PAPD5/7 are host factors that are required for hepatitis B virus RNA stabilization. Hepatology, 2019, 69(4):1398-1411.
doi: 10.1002/hep.30329 pmid: 30365161 |
[115] |
Lim J, Kim D, Lee YS, Ha MJ, Lee M, Yeo J, Chang H, Song J, Ahn K, Kim VN. Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science, 2018, 361(6403):701-704.
doi: 10.1126/science.aam5794 |
[1] | 宋睿嘉, 韩露, 孙海峰, 沈彬. 线粒体DNA碱基编辑技术研究进展[J]. 遗传, 2023, 45(8): 632-642. |
[2] | 何山, 赵健, 宋晓峰. N6-甲基腺苷修饰对女性生殖系统功能的影响[J]. 遗传, 2023, 45(6): 472-487. |
[3] | 宋鹏辉, 马丽娟, 严冬. 外显子拼接复合体塑造m6A表观转录组的形成[J]. 遗传, 2023, 45(6): 464-471. |
[4] | 韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[5] | 田智琛, 尹晓娟. 诱导多能干细胞在儿童疾病的应用研究进展[J]. 遗传, 2023, 45(1): 42-51. |
[6] | 高菲, 王煜, 杜嘉祥, 杜旭光, 赵建国, 潘登科, 吴森, 赵要风. 遗传修饰猪模型在生物医学及农业领域研究进展及应用[J]. 遗传, 2023, 45(1): 6-28. |
[7] | 张元, 赵语婷, 庄乐南, 贺津. 转录中介体复合物在心血管发育和疾病中的转录调控作用[J]. 遗传, 2022, 44(5): 383-397. |
[8] | 刘聪, 冯佳妮, 李玮玮, 朱伟伟, 薛云新, 王岱, 赵西林. 细胞dNTP库的稳态维持与基因组稳定性[J]. 遗传, 2022, 44(2): 96-106. |
[9] | 梁佳琦, 刘畅, 张雯翔, 陈思禹. 肝脏分泌因子与代谢性疾病[J]. 遗传, 2022, 44(10): 853-866. |
[10] | 肖诚, 刘洁颖, 杨春如, 于淼. LMNA基因突变相关脂肪萎缩综合征的研究进展[J]. 遗传, 2022, 44(10): 913-925. |
[11] | 吕柯孬, 潘学峰. 人类神经退行性疾病相关的三核苷酸重复DNA序列不稳定性机制研究进展[J]. 遗传, 2021, 43(9): 835-848. |
[12] | 刘紫妍, 高艾. 炎性衰老在血液系统疾病中的研究进展[J]. 遗传, 2021, 43(12): 1132-1141. |
[13] | 王娅洁, 吴爽爽, 储江, 孔祥阳. 肺部微生物组通过炎症反应介导慢性阻塞性肺疾病转化为肺癌的研究进展[J]. 遗传, 2021, 43(1): 30-39. |
[14] | 吴安平, 庆宏, 全贞贞. Rab蛋白家族在神经类疾病中的作用[J]. 遗传, 2021, 43(1): 16-29. |
[15] | 钱国清. 慢性阻塞性肺疾病全基因组关联研究进展[J]. 遗传, 2020, 42(9): 832-846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: