[1] 杨冬, 姜颖, 贺福初. KAP-1, 转录调控中的一个桥梁分子. 遗传, 2007, 29(2): 131–136.
[2] 田春艳, 张令强, 贺福初. KRAB型锌指蛋白(KZNF)的研究进展. 遗传, 2006, 28(11): 1451–1456.
[3] Emerson RO, Thomas JH, Adaptive evolution in zinc fin-ger transcription factors. PLoS Genet, 2009, 5(1): 1-12.
[4] Ferguson-Smith AC, Surani MA. Imprinting and the epi-genetic asymmetry between parental genomes. Science, 2001, 293(5532): 1086–1089.
[5] Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet, 2001, 2(1): 21–32.
[6] Verona RI, Mann MR, Bartolomei MS. Genomic imprint-ing: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol, 2003, 19: 237–259.
[7] Hirasawa R, Feil R. A KRAB domain zinc finger protein in imprinting and disease. Dev Cell, 2008, 15(4): 487–488.
[8] Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Fergu-son-Smith AC. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell, 2008, 15(4): 547–557.
[9] Wiznerowicz M, Jakobsson J, Szulc J, Liao S, Quazzola A, Beermann F, Aebischer P, Trono D. The Krup-pel-associated box repressor domain can trigger de novo promoter methylation during mouse early embryogenesis. J Biol Chem, 2007, 282(47): 34535–34541.
[10] Ellis J, Hotta A, Rastegar M. Retrovirus silencing by an epigenetic TRIM. Cell, 2007, 131(1): 13–14.
[11] Teich NM, Weiss RA, Martin GR, Lowy DR. Virus infec-tion of murine teratocarcinoma stem cell lines. Cell, 1977, 12(4): 973–982.
[12] Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in em-bryonic cells. Cell, 2007, 131(1): 46–57.
[13] Wolf D, Goff SP. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature, 2009, 458(7242): 1201–1204.
[14] Ninomiya H, Elinson RP, Winklbauer R. Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning. Nature, 2004, 430(6997): 364–367.
[15] García-García MJ, Shibata M, Anderson KV. Chato, a KRAB zinc-finger protein, regulates convergent extension in the mouse embryo. Development, 2008, 135(18): 3053–3062.
[16] Li Y, Yang D, Bai Y, Mo X, Huang W, Yuan W, Yin Z, Deng Y, Murashko O, Wang Y, Fan X, Zhu C, Ocorr K, Bodmer R, Wu X. ZNF418, a novel human KRAB/C2H2 zinc finger protein, suppresses MAPK signaling pathway. Mol Cell Biochem, 2008, 310(1-2): 141–151.
[17] Xiang Z, Yuan W, Luo N, Wang Y, Tan K, Deng Y, Zhou X, Zhu C, Li Y, Liu M, Wu X, Li Y. A novel human zinc fin-ger protein ZNF540 interacts with MVP and inhibits tran-scriptional activities of the ERK signal pathway. Biochem Biophys Res Commun, 2006, 347(1): 288–296.
[18] Cao L, Wang Z, Zhu C, Zhao Y, Yuan W, Li J, Wang Y, Ying Z, Li Y, Yu W, Wu X, Liu M. ZNF383, a novel KRAB-containing zinc finger protein, suppresses MAPK signaling pathway. Biochem Biophys Res Commun, 2005, 333(4): 1050–1059.
[19] Zaret KS. Regulatory phases of early liver development: Paradigms of organogenesis. Nat Rev Genet, 2002, 3(7): 499–512.
[20] Duncan SA. Mechanisms controlling early development of the liver. Mech Dev, 2003, 120(1): 19–33.
[21] Ying W, Jiang Y, Guo L, Hao Y, Zhang Y, Wu S, Zhong F, Wang J, Shi R, Li D, Wan P, Li X, Wei H, Li J, Wang Z, Xue X, Cai Y, Zhu Y, Qian X, He F. A dataset of human fetal liver proteome identified by subcellular fractionation and multiple protein separation and identification tech-nology. Mol Cell Proteomics, 2006, 5(9): 1703–1707.
[22] Jiang Y, Ying W, Wu S, Chen M, Guan W, Yang D, Song Y, Liu X, Li J, Hao Y, Sun A, Geng C, Li H, Mi W, Zhang Y, Zhang J, Chen X, Li L, Gong Y, Li T, Ma J, Li D, Yuan X, Zhang, X, Xue X, Zhu Y, Qian X, He F, Zhong F, Shen H, Lin C, Lu H, Wei L, Cao J, Yun D, Gao M, Fan H, Cheng G, Yu Y, Xie L, Wang H, Yang P. Y, Shi L, Tong W, Li X, Wang Y, Liu S, Sheng Q, Zeng R, Sun Y, Xu Y, Cai J, He P, Gao H, Zhao, X. H, Tan Y, Yan H, YangY, Huang J, Han, Z. G, He Q, Chen P, Liang S, Zhao M, Mao X, Yu H, Cao Z, Li Y, Dai, W, Jiang H, Wang D, Zheng J, Xue G, Tang Y, Cheng J, Liu Y, Wang X, Jia J, An D, Wang Z, Li Q, Cui T. First insight into human liver proteome from PROTEOMESKY-LIVERHu 1.0, a publicly-available data-base. J Proteome Res, 2009, 9(1): 79-94.
[23] Chen CF, Li S, Chen Y, Chen PL, Sharp ZD, Lee WH. The nuclear localization sequences of the BRCA1 protein in-teract with the importin-alpha subunit of the nuclear transport signal receptor. J Biol Chem, 1996, 271(51): 32863–32868.
[24] Zheng L, Pan H, Li S, Flesken-Nikitin A, Chen PL, Boyer TG, Lee WH. Sequence-specific transcriptional corepres-sor function for BRCA1 through a novel zinc finger pro-tein, ZBRK1. Mol Cell, 2000, 6(4): 757–768.
[25] Laptenko O, Prives C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ, 2006, 13(6): 951–961.
[26] Tian C, Xing G, Xie P, Lu K, Nie J, Wang J, Li L, Gao M, Zhang L, He F. KRAB-type zinc-finger protein Apak spe-cifically regulates p53-dependent apoptosis. Nat Cell Biol, 2009, 11(5): 580–591.
[27] Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y. Chro-matin relaxation in response to DNA double-strand breaks is modulated by a novel ATM and KAP-1 de-pendent pathway. Nat Cell Biol, 2006, 8(8): 870–876.
[28] Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochro-matin. Mol Cell, 2008, 31(2): 167–177.
[29] Huang C, Jia Y, Yang S, Chen B, Sun H, Shen F, Wang Y. Characterization of ZNF23, a KRAB-containing protein that is down regulated in human cancers and inhibits cell cycle progression. Exp Cell Res, 2007, 313(2): 254–263.
[30] Huang C, Yang S, Ge R, Sun H, Shen F, Wang Y. ZNF23 induces apoptosis in human ovarian cancer cells. Cancer Lett, 2008, 266(2): 135–143.
[31] Yang Z, Wen HJ, Minhas V, Wood C. The zinc finger DNA-binding domain of K-RBP plays an important role in regulating Kaposi’s sarcoma-associated herpesvirus RTA-mediated gene expression. Virology, 2009, 391(2): 221–231. |