[1] Mishra PJ, Bertino JR. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics, 2009, 10(3): 399–416.
[2] Horikawa Y, Wood CG, Yang HS, Zhao H, Ye YQ, Gu J, Lin J, Habuchi T, Wu XF. Single nucleotide polymor-phisms of microRNA machinery genes modify the risk of renal cell carcinoma. Clin Cancer Res, 2008, 14(23): 7956–7962.
[3] Yang HS, Dinney CP, Ye YQ, Zhu Y, Grossman HB, Wu XF. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res, 2008, 68(7): 2530–2537.
[4] Gottwein E, Cai XZ, Cullen BR. A novel assay for viral microRNA function identifies a single nucleotide poly-morphism that affects Drosha processing. J Virol, 2006, 80(11): 5321–5326.
[5] Duan RH, Pak CH, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet, 2007, 16(9): 1124–1131.
[6] Wu MQ, Jolicoeur N, Li Z, Zhang LH, Fortin Y, L'Abbe D, Yu ZB, Shen SH. Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis, 2008, 29(9): 1710–1716.
[7] Mencía Á, Modamio-Høybjør S, Redshaw N, Morín M, Mayo-Merino F, Olavarrieta L, Aguirre LA, del Castillo I, Steel KP, Dalmay T, Moreno F, Moreno-Pelayo MÁ. Mu-tations in the seed region of human miR-96 are responsi-ble for nonsyndromic progressive hearing loss. Nat Genet, 2009, 41(5): 609–613.
[8] Li W, Duan R, Kooy F, Sherman SL, Zhou W, Jin P.Germline mutation of microRNA-125a is associated with breast cancer. J Med Genet, 2009, 46(5): 358–360.
[9] Pfister S, Remke M, Castoldi M, Bai AHC, Muckenthaler MU, Kulozik A, von Deimling A, Pscherer A, Lichter P, Korshunov A. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol, 2009, 117(4): 457–464.
[10] Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E.miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res, 2009, 69(13): 5553–5559.
[11] Diederichs S, Haber DA.Sequence variations of microR-NAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res, 2006, 66(12): 6097–6104.
[12] Kontorovich T, Levy A, Korostishevsky M, Nir U, Fried-man E. Single nucleotide polymorphisms in miRNA bind-ing sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer, 2010, 127(3): 589–597.
[13] Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casal-ini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Mé-nard S, Croce CM. MicroRNA signatures in human ovarian cancer. Cancer Res, 2007, 67(18): 8699–8707.
[14] Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, Prosper F, Garcia-Foncillas J. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer, 2009, 125(11): 2737–2743.
[15] Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM, Mathews CA, Pauls DL, Rasin MR, Gunel M, Davis NR, Ercan-Sencicek AG, Guez DH, Spertus JA, Leckman JF, Dure LS 4th, Kurlan R, Singer HS, Gilbert DL, Farhi A, Louvi A, Lifton RP, Šestan N, State MW. Sequence variants in SLITRK1 are associated with Tou-rette's syndrome. Science, 2005, 310(5746): 317–320.
[16] He HL, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA, 2005, 102(52): 19075–18980.
[17] Jensen KP, Covault J, Conner TS, Tennen H, Kranzler HR, Furneaux HM. A common polymorphism in serotonin re-ceptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviorsHTR1B mi-croRNA target polymorphism associates with aggressive behavior. Mol Psychiatry, 2009, 14(4): 381–389.
[18] Wang G, van der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK, Martin ER, Vance JM.Variation in the miR-NA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet, 2008, 2(2): 283–289.
[19] Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, Marsit CJ, Kelsey KT. A let-7 mi-croRNA-binding site polymorphism in the KRAS 3' UTR is associated with reduced survival in oral cancers. Carcinogenesis, 2009, 30(6): 1003–1007.
[20] Tian T, Shu YQ, Chen JP, Hu ZB, Xu L, Jin GF, Liang J, Liu P, Zhou XY, Miao RF, Ma HX, Chen YJ, Shen HB. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev, 2009, 18(4): 1183–1187.
[21] Tchatchou S, Jung A, Hemminki K, Sutter C, Wappen-schmidt B, Bugert P, Weber BHF, Niederacher D, Arnold N, Varon-Mateeva R, Ditsch N, Meindl A, Schmutzler RK, Bartram CR, Burwinkel B. A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associ-ated with breast cancer risk in premenopausal women. Carcinogenesis, 2009, 30(1): 59–64.
[22] Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, Novotny J, Försti A, Hemminki K, Canzian F, Landi S. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis, 2008, 29(3): 579–584.
[23] Yang ZY, Kaye DM. Mechanistic insights into the link between a polymorphism of the 3'UTR of the SLC7A1 gene and hypertension. Hum Mutat, 2009, 30(3): 328–333.
[24] Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE. Human mi-croRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide po-lymorphisms related to phenotypes. Am J Hum Genet, 2007, 81(2): 405–413.
[25] Tan Z, Randall G, Fan JH, Camoretti-Mercado B, Brock-man-Schneider R, Pan L, Solway JL, Gern JE, Lemanske RF, Nicolae D, Ober C. Allele-specific targeting of mi-croRNAs to HLA-G and risk of asthma. Am J Hum Genet, 2007, 81(4): 829–834.
[26] Moffatt MF, Kabesch M, Liang LM, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufe A, Rietschel E, Heinzmann A, Simma B, Frischer T, Willis-Owen SAG, Wong KCC, Illig T, Vogelberg C, Weiland SK, von Mutius E, Abecasis GR, Farrall M, Gut IG, Lathrop GM, Cookson WOC. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature, 2007, 448 (7152): 470–473.
[27] Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry JRB, Elliott KS, Hackett R, Guiducci C, Shields B, Zeggini E, Lango H, Lyssenko V, Timpson NJ, Burtt NP, Rayner NW, Saxena R, Ardlie K, Tobias JH, Ness AR, Ring SM, Palmer CNA, Morris AD, Peltonen L, Salomaa V; The Diabetes Genetics Initiative; The Wellcome Trust Case Control Consortium, Davey Smith G, Groop LC, Hattersley AT, McCarthy MI, Hirschhorn JN, Frayling TM. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat Genet, 2007, 39(10): 1245–1250.
[28] Kuipers A, Zhang YZ, Cauley JA, Nestlerode CS, Chu YX, Bunker CH, Patrick AL, Wheeler VW, Hoffman AR, Or-woll ES, Zmuda JM. Association of a high mobility group gene (HMGA2) variant with bone mineral density. Bone, 2009, 45(2): 295–300.
[29] Tay Y, Peter S, Rigoutsos I, Barahona P, Ahmed S, Dröge P. Insights into the regulation of a common variant of HMGA2 associated with human height during embryonic development. Stem Cell Rev, 2009, 5(4): 328–333.
[30] Hornstein E, Mansfield JH, Yekta S, Hu JKH, Harfe BD, McManus MT, Baskerville S, Bartel DP, Tabin CJ. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature, 2005, 438(7068): 671–674.
[31] Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, La-ville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M.A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects mus-cularity in sheep. Nat Genet, 2006, 38(7): 813–818. |