遗传 ›› 2012, Vol. 34 ›› Issue (9): 1082-1088.doi: 10.3724/SP.J.1005.2012.01082
贾顺姬, 孟安明
收稿日期:
2012-05-04
修回日期:
2012-06-21
出版日期:
2012-09-20
发布日期:
2012-09-25
通讯作者:
孟安明
E-mail:mengam@mail.tsinghua.edu.cn
JIA Shun-Ji, MENG An-Ming
Received:
2012-05-04
Revised:
2012-06-21
Online:
2012-09-20
Published:
2012-09-25
摘要: 斑马鱼作为重要的脊椎动物模式系统之一, 由于其多方面的优势, 在生命科学研究领域发挥着越来越重要的作用。目前, 斑马鱼已被广泛地用于发育生物学、分子生物学、细胞生物学、遗传学、神经生物学、肿瘤学、免疫学、海洋生物学、药物学、毒理与环保等诸多方面的研究, 一些重要的成果不断涌现, 为现代生命科学的发展做出了重要贡献。我国20世纪90年代后期引入斑马鱼模式系统, 此后研究队伍扩大很快, 有影响的研究成果不断涌现, 促进了多个学科的发展。文章重点综述了我国内地与香港地区在斑马鱼研究方面的发展历程以及所取得的代表性成果, 以期促进该模式系统更广泛地用于开展高水平研究。
贾顺姬 孟安明. 中国斑马鱼研究发展历程及现状[J]. 遗传, 2012, 34(9): 1082-1088.
JIA Shun-Ji, MENG An-Ming. The development of zebrafish research in China[J]. HEREDITAS, 2012, 34(9): 1082-1088.
[1] Talwar PK, Jhingran AG. Inland fishes of India and adjacent countries. Oxford: Oxford & IBH Pub, 1991.[2] Roosen-Runge EC. On the early development-bipolar differentiation and cleavage-of the zebra fish, Brachydanio rerio. Biol Bull, 1938, 75(1): 119-133.[3] Hisaoka KK, Hopper AF. Some effects of barbituric and diethylbarbituric acid on the development of the zebra fish, Brachydanio rerio. Anat Rec, 1957, 129(3): 297-307.[4] Skidmore JF. Resistance to zinc sulphate of the zebrafish (Brachydanio rerio Hamilton-Buchanan) at dif-ferent phases of its life history. Ann Appl Biol, 1965, 56(1): 47-53.[5] Streisinger G, Walker C, Dower N, Knauber D, Singer F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature, 1981, 291(5813): 293-296.[6] Haffter P, Granato M, Brand M, Mullins MC, Hammer-schmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development, 1996, 123: 1-36.[7] Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abde-lilah S, Rangini Z, Belak J, Boggs C. A genetic screen for mutations affecting embryogenesis in zebrafish. Development, 1996, 123: 37-46.[8] Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C. Large-scale mutagenesis in the zebrafish: In search of genes controlling development in a vertebrate. Curr Biol, 1994, 4(3): 189-202.[9] Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH. Target-selected inactivation of the zebrafish rag1 gene. Science, 2002, 297(5578): 99-102.[10] Gaiano N, Amsterdam A, Kawakami K, Allende M, Becker T, Hopkins N. Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature, 1996, 383(6603): 829-832.[11] Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell, 2004, 7(1): 133-144.[12] Nasevicius A, Ekker SC. Effective targeted gene 'knock-down' in zebrafish. Nat Genet, 2000, 26(2): 216-220.[13] Hyatt TM, Ekker SC. Vectors and techniques for ectopic gene expression in zebrafish. Methods Cell Biol, 1999, 59: 117-126.[14] Meng A, Jessen JR, Lin S. Transgenesis. Methods Cell Biol, 1999, 60: 133-148.[15] Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol, 2008, 26(6): 695-701.[16] Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol, 2008, 26(6): 702-708.[17] Foley JE, Maeder ML, Pearlberg J, Joung JK, Peterson RT, Yeh JR. Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc, 2009, 4(12): 1855-1867.[18] Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 2011, 29(2): 143-148.[19] Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Bio-technol, 2011, 29(2): 149-153.[20] Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol, 2011, 29(8): 699-700.[21] Dave G, Xiu RQ. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch Environ Contam Toxicol, 1991, 21(1): 126-134.[22] Zhang L, Zhou H, Su Y, Sun Z, Zhang H, Zhang Y, Ning Y, Chen YG, Meng A. Zebrafish Dpr2 inhibits mesoderm in-duction by promoting degradation of nodal receptors. Science, 2004, 306(5693): 114-117.[23] Cui Y, He S, Xing C, Lu K, Wang J, Xing G, Meng A, Jia S, He F, Zhang L. SCFFBXL15 regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1. EMBO J, 2011, 30(13): 2675-2689.[24] Rui Y, Xu Z, Xiong B, Cao Y, Lin S, Zhang M, Chan SC, Luo W, Han Y, Lu Z, Ye Z, Zhou HM, Han J, Meng A, Lin SC. A beta-catenin-independent dorsalization pathway activated by Axin/JNK signaling and antagonized by aida. Dev Cell, 2007, 13(2): 268-282.[25] Xia LX, Jia SJ, Huang SJ, Wang HL, Zhu Y, Mu Y, Kan L, Zheng W, Wu D, Li X, Sun Q, Meng A, Chen D. The Fused/Smurf complex controls the fate of Drosophila germline stem cells by generating a gradient BMP response. Cell, 2010, 143(6): 978-990.[26] Xiong B, Rui Y, Zhang M, Shi K, Jia S, Tian T, Yin K, Huang H, Lin S, Zhao X, Chen Y, Chen YG, Lin SC, Meng A. Tob1 controls dorsal development of zebrafish embryos by antagonizing maternal beta-catenin transcriptional activity. Dev Cell, 2006, 11(2): 225-238.[27] Zhao J, Cao Y, Zhao C, Postlethwait J, Meng A. An SP1-like transcription factor Spr2 acts downstream of Fgf signaling to mediate mesoderm induction. EMBO J, 2003, 22(22): 6078-6088.[28] Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J, Hu M, Davis CM, Wang J, Brunicardi FC, Shi Y, Chen YG, Meng A, Feng XH. PPM1A functions as a Smad Phosphatase to terminate TGF-beta signaling. Cell, 2006, 125(5): 915-928.[29] Jia S, Dai F, Wu D, Lin X, Xing C, Xue Y, Wang Y, Xiao M, Wu W, Feng XH, Meng A. Protein phosphatase 4 cooperates with Smads to promote BMP signaling in dorsoventral patterning of zebrafish embryos. Dev Cell, 22(5): 1065-1078.[30] Huang H, Lu FI, Jia S, Meng S, Cao Y, Wang Y, Ma W, Yin K, Wen Z, Peng J, Thisse C, Thisse B, Meng A. Amotl2 is essential for cell movements in zebrafish em-bryo and regulates c-Src translocation. Development, 2007, 134(5): 979-988.[31] Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP, Li L. Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol, 2008, 180(6): 1087-1100.[32] Ding Y, Xi Y, Chen T, Wang JY, Tao DL, Wu ZL, Li YP, Li C, Zeng R, Li L. Caprin-2 enhances canonical Wnt signaling through regulating LRP5/6 phosphorylation. J Cell Biol, 2008, 182(5): 865-872.[33] Li Z, Nie F, Wang S, Li L. Histone H4 Lys 20 mono-methylation by histone methylase SET8 mediates Wnt target gene activation. Proc Natl Acad Sci USA, 2011, 108(8): 3116-3123.[34] Liu X, Huang S, Ma J, Li C, Zhang Y, Luo L. NF-kappaB and Snail1a coordinate the cell cycle with gastrulation. J Cell Biol, 2009, 184(6): 805-815.[35] Jiang X, Yang P, Ma L. Kinase activity-independent regulation of cyclin pathway by GRK2 is essential for zebrafish early development. Proc Natl Acad Sci USA, 2009, 106(25): 10183-10188.[36] Shao M, Liu ZZ, Wang CD, Li HY, Carron C, Zhang HW, Shi DL. Down syndrome critical region protein 5 regulates membrane localization of Wnt receptors, Dishevelled stability and convergent extension in vertebrate embryos. Development, 2009, 136(12): 2121-2131.[37] Song HD, Sun XJ, Deng M, Zhang GW, Zhou Y, Wu XY, Sheng Y, Chen Y, Ruan Z, Jiang CL, Fan HY, Zon LI, Kanki JP, Liu TX, Look AT, Chen Z. Hematopoietic gene expression profile in zebrafish kidney marrow. Proc Natl Acad Sci USA, 2004, 101(46): 16240-16245.[38] Yue R, Kang JH, Zhao C, Hu WX, Tang YW, Liu XS, Pei G. Beta-arrestin1 regulates zebrafish hematopoiesis through binding to YY1 and relieving polycomb group re-pression. Cell, 2009, 139(3): 535-546.[39] Jin H, Sood R, Xu J, Zhen F, English MA, Liu PP, Wen Z. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI. Development, 2009, 136(4): 647-654.[40] Zhang Y, Jin H, Li L, Qin FX, Wen Z. cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis. Blood, 2011, 118(15): 4093-4101.[41] Li L, Jin H, Xu J, Shi Y, Wen Z. Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive mye-lopoiesis. Blood, 2011, 117(4): 1359-1369.[42] Du L, Xu J, Li X, Ma N, Liu Y, Peng J, Osato M, Zhang W, Wen Z. Rumba and Haus3 are essential factors for the maintenance of hematopoietic stem/progenitor cells during zebrafish hematopoiesis. Development, 2011, 138(4): 619-629.[43] Fu CT, Zhu KY, Mi JQ, Liu YF, Murray ST, Fu YF, Ren CG, Dong ZW, Liu YJ, Dong M, Jin Y, Chen Y, Deng M, Zhang W, Chen B, Breslin P, Chen SJ, Chen Z, Becker MW, Zhu J, Zhang JW, Liu TX. An evolutionarily con-served PTEN-C/EBPalpha-CTNNA1 axis controls myeloid development and transformation. Blood, 2010, 115(23): 4715-4724.[44] Yuan H, Zhou J, Deng M, Zhang Y, Chen Y, Jin Y, Zhu J, Chen SJ, de The H, Chen Z, Liu TX. Sumoylation of CCAAT/enhancer-binding protein alpha promotes the bi-ased primitive hematopoiesis of zebrafish. Blood, 2011, 117(26): 7014-7020.[45] Zhou T, Wang L, Zhu KY, Dong M, Xu PF, Chen Y, Chen SJ, Chen Z, Deng M, Liu TX. Dominant-negative C/ebpalpha and polycomb group protein Bmi1 extend short-lived hematopoietic stem/progenitor cell life span and induce lethal dyserythropoiesis. Blood, 2011, 118(14): 3842-3852.[46] Fu YF, Du TT, Dong M, Zhu KY, Jing CB, Zhang Y, Wang L, Fan HB, Chen Y, Jin Y, Yue GP, Chen SJ, Chen Z, Huang QH, Jing Q, Deng M, Liu TX. Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis. Blood, 2009, 113(6): 1340-1349.[47] Yu PC, Gu SY, Bu JW, Du JL. TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res, 2010, 106(7): 1221-1232.[48] Wang L, Zhang P, Wei Y, Gao Y, Patient R, Liu F. A blood flow-dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos. Blood, 2011, 118(15): 4102-4110.[49] Wang LJ, He F, Bu J, Liu XQ, Du W, Dong JM, Cooney JD, Dubey SK, Shi Y, Gong B, Li J, McBride PF, Jia YL, Lu F, Soltis KA, Lin Y, Namburi P, Liang C, Sundaresan P, Paw BH, Li DY, Phillips JD, Yang ZL. ABCB6 mutations cause ocular coloboma. Am J Hum Genet, 2012, 90(1): 40-48.[50] Lin PF, Li JW, Liu QJ, Mao F, Li JS, Qiu RF, Hu HL, Song Y, Yang Y, Gao GM, Yan CZ, Yang WL, Shao CS, Gong YQ. A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). Am J Hum Genet, 2008, 83(6): 752-759.[51] Xu L, Yin W, Xia J, Peng M, Li S, Lin S, Pei D, Shu X. An antiapoptotic role of sorting nexin 7 is required for liver development in zebrafish. Hepatology, 2012, 55(6): 1985- 1993.[52] Feng X, Liu X, Zhang W, Xiao WH. P53 directly sup-presses BNIP3 expression to protect against hypoxia- induced cell death. EMBO J, 2011, 30(16): 3397-3415.[53] Wang D, Jao LE, Zheng N, Dolan K, Ivey J, Zonies S, Wu X, Wu K, Yang H, Meng Q, Zhu Z, Zhang B, Lin S, Bur-gess SM. Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proc Natl Acad Sci USA, 2007, 104(30): 12428-12433.[54] Zhao L, Zhao X, Tian T, Lu Q, Skrbo-Larssen N, Wu D, Kuang Z, Zheng X, Han Y, Yang S, Zhang C, Meng A. Heart-specific isoform of tropomyosin4 is essential for heartbeat in zebrafish embryos. Cardiovasc Res, 2008, 80(2): 200-208.[55] Zhao X, Zhao L, Tian T, Zhang Y, Tong J, Zheng X, Meng A. Interruption of cenph causes mitotic failure and em-bryonic death, and its haploinsufficiency suppresses can-cer in zebrafish. J Biol Chem, 2010, 285(36): 27924-27934.[56] Han Y, Mu Y, Li X, Xu P, Tong J, Liu Z, Ma T, Zeng G, Yang S, Du J, Meng A. Grhl2 deficiency impairs otic de-velopment and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28. Hum Mol Genet, 2011, 20(16): 3213-3226. |
[1] | 熊凤,谢训卫,潘鲁媛,李阔宇,柳力月,张昀,李玲璐,孙永华. 国家斑马鱼资源中心的资源、技术和服务建设[J]. 遗传, 2018, 40(8): 683-692. |
[2] | 许璟瑾, 张文娟, 王静怡, 姚丽云, 潘裕添, 欧一新, 薛钰, . 金线莲抑制斑马鱼黑色素形成的活性组分筛选及机理研究[J]. 遗传, 2017, 39(12): 1178-1187. |
[3] | 刘姗姗, 张翠珍, 彭刚. 饥饿对幼年斑马鱼下丘脑摄食相关性神经肽表达的影响[J]. 遗传, 2016, 38(9): 821-830. |
[4] | 张峰华,王厚鹏,黄思雨,熊凤,朱作言,孙永华. 两种密码子优化的Cas9编码基因在斑马鱼胚胎中基因敲除效率的比较[J]. 遗传, 2016, 38(2): 144-154. |
[5] | 顾爱华 严丽锋. 斑马鱼在再生医学研究中的应用及进展[J]. 遗传, 2013, 35(7): 856-866. |
[6] | 李礼,罗凌飞. 以斑马鱼为模式动物研究器官的发育与再生[J]. 遗传, 2013, 35(4): 421-432. |
[7] | 徐冉冉 张从伟 曹羽 王强. 缺失mir122抑制斑马鱼肝脏前体细胞向肝细胞分化[J]. 遗传, 2013, 35(4): 488-494. |
[8] | 沈延 黄鹏 张博. TALEN构建与斑马鱼基因组定点突变的实验方法与流程[J]. 遗传, 2013, 35(4): 533-544. |
[9] | 李辉辉 黄萍 董巍 朱作言 刘东. 斑马鱼研究走向生物医学[J]. 遗传, 2013, 35(4): 410-420. |
[10] | 李小泉,杜久林. 幼年斑马鱼的视觉系统与捕食行为[J]. 遗传, 2013, 35(4): 468-476. |
[11] | 孙婷 谢翔 张剑卿 包静 汤川政 雷道希 邱菊辉 王贵学. 水平回转培养对斑马鱼血管发育的影响[J]. 遗传, 2013, 35(4): 502-510. |
[12] | 张春霞 刘峰. 斑马鱼高分辨率整胚原位杂交实验方法与流程[J]. 遗传, 2013, 35(4): 522-528. |
[13] | 佟静媛,柳星峰,贾顺姬. Rbb4l促进TGF-β/Nodal信号转导和斑马鱼胚胎的背部发育[J]. 遗传, 2013, 35(4): 477-487. |
[14] | 刘新星 张雨田 张博. 构建斑马鱼心脏损伤-再生模型的手术方法[J]. 遗传, 2013, 35(4): 529-532. |
[15] | 王学耕 朱作言 孙永华 赵珏. 鱼类核移植与重编程[J]. 遗传, 2013, 35(4): 433-440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: