[1] Tavernier G, Wolfrum K, Demeester J, de Smedt SC, Ad-jaye J, Rejman J. Activation of pluripotency-associated genes in mouse embryonic ?broblasts by non-viral transfection with in vitro-derived mRNAs encoding Oct4, Sox2, Klf4 and cMyc. Biomaterials, 2012, 33(2): 412-417.[2] Greber B, Wu G, Bernemann C, Joo JY, Han DW, Ko K, Tapia N, Sabour D, Sterneckert J, Tesar P, Schöler HR. Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell, 2010, 6(3): 215-226.[3] Rao S, Zhen S, Roumiantsev S, McDonald LT, Yuan GC, Orkin SH. Differential roles of sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol, 2010, 30(22): 5364-5380.[4] Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, Robson P, Lim B. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol, 2006, 8(10): 1114- 1134.[5] Hong N, Li Z, Hong Y. Fish stem cell cultures. Int J Biol Sci, 2011, 7(4): 392-402.[6] Christen B, Robles V, Raya M, Paramonov I, Izpisúa Belmonte JC. Regeneration and reprogramming compared. BMC Biol, 2010, 8(1): 5.[7] Abrams EW, Mullins MC. Early zebrafish development: It’s in the maternal genes. Curr Opin Genet Dev, 2009, 19(4): 396-403.[8] Furutani-Seiki M, Wittbrodt J. Medaka and zebrafish, an evolutionary twin study. Mech Dev, 2004, 121(7-8): 629-637.[9] Trede NS, Langenau DM, Traver D, Look AT, Zon LI. The use of zebrafish to understand immunity. Immunity, 2004, 20(4): 367-379.[10] Sánchez-Sánchez AV, Camp E, Mullor JL. Fishing pluri-potency mechanisms in vivo. Int J Biol Sci, 2011, 7(4): 410-417.[11] Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SG, Lim AY, Hajan HS, Collas P, Bourque G, Gong Z, Korzh V, Aleström P, Mathavan S. Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res, 2011, 21(8): 1328-1338.[12] Robles V, Martí M, Izpisua Belmonte JC. Study of pluri-potency markers in zebrafish embryos and transient em-bryonic stem cell cultures. Zebrafish, 2011, 8(2): 57-63.[13] Schöler HR. Octamania: The POU factors in murine development. Trends Genet, 1991, 7(10): 323-329.[14] Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998, 95(3): 379-391.[15] Pardo M, Lang B, Yu L, Prosser H, Bradley A, Babu MM, Choudhary J. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell, 2010, 6(4): 382-395.[16] Pan GJ, Chang ZY, Schöler HR, Pei D. Stem cell pluripo-tency and transcription factor Oct4. Cell Res, 2002, 12(5-6): 321-329.[17] Onichtchouk D, Geier F, Polok B, Messerschmidt DM, Mössner R, Wendik B, Taylor V, Timmer J, Driever W. Oct4/Pou5f1 controls differentiation timing in early ze-brafish embryo. Dev Biol, 2010, 344(1): 415-417.[18] Chen T, Du J, Lu G. Cell growth arrest and apoptosis in-duced by Oct4 or Nanog knockdown in mouse embryonic stem cells: a possible role of Trp53. Mol Biol Rep, 2012, 39(2): 1855-1861.[19] Lunde K, Belting HG, Driever W. Zebrafish pou5f1/pou2, homolog of mammalian Oct4, functions in the endoderm specification cascade. Curr Biol, 2004, 14(1): 48-55.[20] Onichtchouk D, Geier F, Polok B, Messerschmidt DM, Mössner R, Wendik B, Song S, Taylor V, Timmer J, Driever W. Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development. Mol Syst Biol
|