[1] Fang P, Lin JF, Pan HC, Shen YQ, Schachner M. A surgery protocol for adult zebrafish spinal cord injury. J Genet Genomics, 2012, 39(9): 481-487.[2] Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol, 2012, 72(3): 429-461.[3] Becker T, Bernhardt RR, Reinhard E, Wullimann MF, Tongiorgi E, Schachner M. Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules. J Neurosci, 1998, 18(15): 5789-5803.[4] Lin JF, Pan HC, Ma LP, Shen YQ, Schachner M. The cell neural adhesion molecule contactin-2 (TAG-1) is benifecial for functional recovery after spinal cord injury in adult zebrafish. PLoS One, 2012, 7(12): e52376.[5] Mocchetti I, Wrathall JR. Neurotrophic factors in central nervous system trauma. J Neurotrauma, 1995, 12(5): 853-870.[6] Chu TH, Wang L, Guo A, Chan VWK, Wong CWM, Wu W. GDNF-treated acellular nerve graft promotes motoneuron axon regeneration after implantation into cervical root avulsed-spinal cord. Neuropathol Appl Neurobiol, 2012, 38(7): 681-695.[7] Reid AJ, Sun M, Wiberg M, Downes S, Terenghi G, Kingham PJ. Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience, 2011, 199: 515-522.[8] Lee MY, Chen L, Toborek M. Nicotine attenuates iNOS expression and contributes to neuroprotection in a compressive model of spinal cord injury. J Neurosci Res, 2009, 87(4): 937-947.[9] Dayan K, Keser A, Konyalioglu S, Erturk M, Aydin F, Sengul G, Dagci T. The effect of hyperbaric oxygen on neuroregeneration following acute thoracic spinal cord injury. Life Sci, 2012, 90(9-10): 360-364.[10] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT Method. Methods, 2001, 25(4): 402-408.[11] Pan HC, Lin JF, Ma LP, Shen YQ, Schachner M. Major vault protein promotes locomotor recovery and regeneration after spinal cord injury in adult zebrafish. Eur J Neurosci, 2013, 37(2): 203-211.[12] Facello B, Castaldo L, De Martino L, Lucini C. Glial cell line-derived neurotrophic factor in Purkinje cells of adult zebrafish: an autocrine mode of action? Neurosci Lett, 2009, 465(2): 133-137.[13] Tolbert DL, Clark BR. GDNF and IGF-I trophic factors delay hereditary Purkinje cell degeneration and the progression of gait ataxia. Exp Neurol, 2003,183(1): 205-219.[14] Koo H, Choi BH. Expression of glial cell line-derived neurotrophic factor (GDNF) in the developing human fetal brain. Int J Dev Neurosci, 2001,19(6): 549-558.[15] Jones J, Jaramillo-Merchán J, Bueno C, Pastor D, Viso-León M, Martínez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis, 2010, 40(2): 415-423.[16] Kawakami H, Nitta A, Matsuyama Y, Kamiya M, Satake K, Sato K, Kondou K, Iwata H, Furukawa S. Increase in neurotrophin-3 expression followed by Purkinje cell degeneration in the adult rat cerebellum after spinal cord transection. J Neurosci Res, 2000,62(5): 668-674.[17] Wang TY, Morgan JI. The Purkinje cell degeneration (pcd) mouse: an unexpected molecular link between neuronal degeneration and regeneration. Brain Res, 2007, 1140: 26-40.[18] Kimura S, Hosaka N, Yuge I, Yamazaki A, Suda K, Taneichi H, Denda H, Endo N. Cerebrospinal fluid concentrations of nitric oxide metabolites in spinal cord injury. Spine (Phila Pa 1976), 2009, 34(18): E645-E652.[19] Hervera A, Negrete R, Leánez S, Martín-Campos JM, Pol O. The spinal cord expression of neuronal and inducible nitric oxide synthases and their contribution in the maintenance of neuropathic pain in mice. PLoS One |