[1] | Sai XR, Ladher RK . Early steps in inner ear development: induction and morphogenesis of the otic placode. Front Pharmacol, 2015,6:19. | [2] | Vemaraju S, Kantarci H, Padanad MS, Riley BB . A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear. PLoS Genet, 2012,8(11):e1003068. | [3] | Nakajima Y . Signaling regulating inner ear development: cell fate determination, patterning, morphogenesis, and defects. Congenit Anom (Kyoto), 2015,55(1):17-25. | [4] | Chen ZQ, Han XH, Cao X . Sonic Hedgehog signaling pathway and regulation of inner ear development. Hereditas (Beijing), 2013,35(9):1058-1064. | [4] | 陈志强, 韩新焕, 曹新 . Sonic Hedgehog信号通路与内耳发育调控. 遗传, 2013,35(9):1058-1064. | [5] | Fan QQ, Meng FL, Fang R, Li GP, Zhao XL . Functions of Wnt signaling pathway in hair cell differentiation and regeneration. Hereditas (Beijing), 2017,39(10):897-907. | [5] | 范晴晴, 孟飞龙, 房冉, 李高鹏, 赵小立 . Wnt信号通路在毛细胞分化和再生过程中的作用. 遗传, 2017,39(10):897-907. | [6] | Beenken A, Mohammadi M . The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov, 2009,8(3):235-253. | [7] | Ornitz DM, Itoh N . The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol, 2015,4(3):215-266. | [8] | Padanad MS, Bhat N, Guo BW, Riley BB . Conditions that influence the response to Fgf during otic placode induction. Dev Biol, 2012,364(1):1-10. | [9] | Litsiou A, Hanson S, Streit A . A balance of FGF, BMP and WNT signalling positions the future placode territory in the head. Development, 2005,132(18):4051-4062. | [10] | Singh S, Groves AK . The molecular basis of craniofacial placode development. Wiley Interdiscip Rev Dev Biol, 2016,5(3):363-376. | [11] | Mahmood R, Kiefer P, Guthrie S, Dickson C, Mason I . Multiple roles for FGF-3 during cranial neural development in the chicken. Development, 1995,121(5):1399-1410. | [12] | Wright TJ, Mansour SL . Fgf3 and Fgf10 are required for mouse otic placode induction. Development, 2003,130(15):3379-3390. | [13] | Chen JC, Tambalo M, Barembaum M, Ranganathan R, Simões-Costa M, Bronner ME, Streit A . A systems-level approach reveals new gene regulatory modules in the developing ear. Development, 2017,144(8):1531-1543. | [14] | Anwar M, Tambalo M, Ranganathan R, Grocott T, Streit A . A gene network regulated by FGF signalling during ear development. Sci Rep, 2017,7(1):6162. | [15] | Ohyama T, Mohamed OA, Taketo MM, Dufort D, Groves AK . Wnt signals mediate a fate decision between otic placode and epidermis. Development, 2006,133(5):865-875. | [16] | Chai RJ, Kuo BY, Wang T, Liaw EJ, Xia AP, Jan TA, Liu ZY, Taketo MM, Oghalai JS, Nusse R, Zuo J, Cheng AG . Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci USA, 2012,109(21):8167-8172. | [17] | Li WY, Wu JF, Yang JM, Sun S, Chai RJ, Chen ZY, Li HW . Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci USA, 2015,112(1):166-171. | [18] | Freter S, Muta Y, Mak SS, Rinkwitz S, Ladher RK . Progressive restriction of otic fate: the role of FGF and Wnt in resolving inner ear potential. Development, 2008,135(20):3415-3424. | [19] | Wright KD, Mahoney RAA, Zhang J, Shim K . Cooperative and independent functions of FGF and Wnt signaling during early inner ear development. BMC Dev Biol, 2015,15:33. | [20] | Urness LD, Paxton CN, Wang XF, Schoenwolf GC, Mansour SL . FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Dev Biol, 2010,340(2):595-604. | [21] | Vendrell V, Vázquez-Echeverría C, López-Hernández I, Alonso BD, Martinez S, Pujades C, Schimmang T . Roles of Wnt8a during formation and patterning of the mouse inner ear. Mech Dev, 2013,130(2-3):160-168. | [22] | Steevens AR, Sookiasian DL, Glatzer JC, Kiernan AE . SOX2 is required for inner ear neurogenesis. Sci Rep, 2017,7(1):4086. | [23] | Gálvez H, Abelló G, Giraldez F . Signaling and transcription factors during inner ear development: the generation of hair cells and otic neurons. Front Cell Dev Biol, 2017,5:21. | [24] | Wang CM, Qing J, Xie DH . Neurod1 in the development of inner ear sensory neurons and hair cells. Chin J Otol, 2015,13(1):161-165. | [24] | 王春梅, 卿洁, 谢鼎华 . Neurod1与内耳感觉神经及毛细胞发育的相关研究. 中华耳科学志, 2015,13(1):161-165. | [25] | Wang JL, Wu Y, Zhao F, Wu YT, Dong W, Zhao J, Zhu ZY, Liu D . Fgf-signaling-dependent Sox9a and Atoh1a regulate otic neural development in zebrafish. J Neurosci, 2015,35(1):234-244. | [26] | Kantarci H, Gerberding A, Riley BB . Spemann organizer gene Goosecoid promotes delamination of neuroblasts from the otic vesicle. Proc Natl Acad Sci USA, 2016,113(44):E6840-E6848. | [27] | Huh SH, Warchol ME, Ornitz DM . Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling. eLife, 2015,4:e05921. | [28] | Haque K, Pandey AK, Zheng HW, Riazuddin S, Sha SH, Puligilla C . MEKK4 signaling regulates sensory cell development and function in the mouse inner ear. J Neurosci, 2016,36(4):1347-1361. | [29] | Neves J, Uchikawa M, Bigas A, Giraldez F . The prosensory function of Sox2 in the chicken inner ear relies on the direct regulation of Atoh1. PLoS One, 2012,7(1):e30871. | [30] | Ono K, Kita T, Sato S, O'Neill P, Mak SS, Paschaki M, Ito M, Gotoh N, Kawakami K, Sasai Y, Ladher RK . FGFR1-Frs2/3 signalling maintains sensory progenitors during inner ear hair cell formation. PLoS Genet, 2014,10(1):e1004118. | [31] | Munnamalai V, Hayashi T, Bermingham-McDonogh O. Notch prosensory effects in the Mammalian cochlea are partially mediated by Fgf20. J Neurosci, 2012,32(37):12876-12884. | [32] | Jacques BE, Montcouquiol ME, Layman EM, Lewandoski M, Kelley MW . Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea. Development, 2007,134(16):3021-3029. | [33] | Puligilla C, Feng F, Ishikawa K, Bertuzzi S, Dabdoub A, Griffith AJ, Fritzsch B, Kelley MW . Disruption of fibroblast growth factor receptor 3 signaling results in defects in cellular differentiation, neuronal patterning, and hearing impairment. Dev Dyn, 2007,236(7):1905-1917. | [34] | Mansour SL, Twigg SRF, Freeland RM, Wall SA, Li CY, Wilkie AOM . Hearing loss in a mouse model of Muenke syndrome. Hum Mol Genet, 2009,18(1):43-50. | [35] | Mansour SL, Li CY, Urness LD . Genetic rescue of Muenke syndrome model hearing loss reveals prolonged FGF-dependent plasticity in cochlear supporting cell fates. Genes Dev, 2013,27(21):2320-2331. | [36] | Yousaf R, Meng Q, Hufnagel RB, Xia Y, Puligilla C, Ahmed ZM, Riazuddin S . MAP3K1 function is essential for cytoarchitecture of the mouse organ of Corti and survival of auditory hair cells. Dis Model Mech, 2015,8(12):1543-1553. | [37] | Furness DN . Molecular basis of hair cell loss. Cell Tissue Res, 2015,361(1):387-399. | [38] | Stone JS, Cotanche DA . Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol, 2007,51(6-7):633-647. | [39] | Waqas M, Zhang SS, He ZH, Tang ML, Chai RJ . Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea. Front Med, 2016,10(3):237-249. | [40] | Ku YC, Renaud NA, Veile RA, Helms C, Voelker CCJ, Warchol ME, Lovett M . The transcriptome of utricle hair cell regeneration in the avian inner ear. J Neurosci, 2014,34(10):3523-3535. | [41] | Jiang LJ, Romero-Carvajal A, Haug JS, Seidel CW, Piotrowski T . Gene-expression analysis of hair cell regeneration in the zebrafish lateral line. Proc Natl Acad Sci USA, 2014,111(14):E1383-E1392. | [42] | Lee SG, Huang MQ, Obholzer ND, Sun S, Li WY, Petrillo M, Dai P, Zhou Y, Cotanche DA, Megason SG, Li HW, Chen ZY . Myc and Fgf are required for zebrafish neuromast hair cell regeneration. PLoS One, 2016,11(6):e0157768. | [43] | He YZ, Tang DM, Cai CF, Chai RJ, Li HJ . LSD1 is required for hair cell regeneration in zebrafish. Mol Neurobiol, 2016,53(4):2421-2434. | [44] | Tang DM, Lin Q, He YZ, Chai RJ, Li HW . Inhibition of H3K9me2 reduces hair cell regeneration after hair cell loss in the zebrafish lateral line by down-regulating the wnt and fgf signaling pathways. Front Mol Neurosci, 2016,9:39. | [45] | Liu RY, Zhao LD, Cong T, Yang SM . Research and development of stem cell therapy for deafness. Chin J Otol, 2016,14(1):6-9. | [45] | 刘日渊, 赵立东, 丛涛, 杨仕明 . 干细胞治疗耳聋研究进展. 中华耳科学杂志, 2016,14(1):6-9. | [46] | Chen W, Jongkamonwiwat N, Abbas L, Eshtan SJ, Johnson SL, Kuhn S, Milo M, Thurlow JK, Andrews PW, Marcotti W, Moore HD, Rivolta MN . Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature, 2012,490(7419):278-282. | [47] | Ding J, Tang ZH, Chen JR, Shi HS, Chen JL, Wang CC, Zhang C, Li L, Chen P, Wang JF . Induction of differentiation of human embryonic stem cells into functional hair-cell-like cells in the absence of stromal cells. Int J Biochem Cell Biol, 2016,81:208-222. | [48] | Ronaghi M, Nasr M, Ealy M, Durruthy-Durruthy R, Waldhaus J, Diaz GH, Joubert LM, Oshima K, Heller S . Inner ear hair cell-like cells from human embryonic stem cells. Stem Cells Dev, 2014,23(11):1275-1284. | [49] | Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S . Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell, 2010,141(4):704-716. | [50] | Ohnishi H, Skerleva D, Kitajiri S, Sakamoto T, Yamamoto N, Ito J, Nakagawa T . Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method. Neurosci Lett, 2015,599:49-54. | [51] | Ealy M, Ellwanger DC, Kosaric N, Stapper AP, Heller S . Single-cell analysis delineates a trajectory toward the human early otic lineage. Proc Natl Acad Sci USA, 2016,113(30):8508-8513. | [52] | Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E . Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature, 2013,500(7461):217-221. | [53] | Koehler KR, Hashino E . 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc, 2014,9(6):1229-1244. | [54] | Koehler KR, Nie J, Longworth-Mills E, Liu XP, Lee J, Holt JR, Hashino E . Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat Biotechnol, 2017,35(6):583-589. | [55] | Ohishi A, Nishimura G, Kato F, Ono H, Maruwaka K, Ago M, Suzumura H, Hirose E, Uchida Y, Fukami M, Ogata T . Mutation analysis of FGFR1-3 in 11 Japanese patients with syndromic craniosynostoses. Am J Med Genet A, 2017,173(1):157-162. | [56] | Yarnell CMP, Addissie YA, Hadley DW, Sacoto MJG, Agochukwu NB, Hart RA, Wiggs EA, Platte P, Paelecke Y, Collmann H, Schweitzer T, Kruszka P, Muenke M . Executive function and adaptive behavior in muenke syndrome. J Pediatr, 2015,167(2):428-434. | [57] | Muenke M, Gripp KW, McDonald-McGinn DM, Gaudenz K, Whitaker LA, Bartlett SP, Markowitz RI, Robin NH, Nwokoro N, Mulvihill JJ, Losken HW, Mulliken JB, Guttmacher AE, Wilroy RS, Clarke LA, Hollway G, Adès LC, Haan EA, Mulley JC, Cohen MM,Jr, Bellus GA, Francomano CA, Moloney DM, Wall SA, Wilkie AO, Zackai EH. A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. Am J Hum Genet, 1997,60(3):555-564. | [58] | Kruszka P, Addissie YA, Yarnell CM, Hadley DW, Sacoto MJG, Platte P, Paelecke Y, Collmann H, Snow N, Schweitzer T, Boyadjiev SA, Aravidis C, Hall SE, Mulliken JB, Roscioli T, Muenke M . Muenke syndrome: an international multicenter natural history study. Am J Med Genet A, 2016,170A(4):918-929. | [59] | Agochukwu NB, Solomon BD, Muenke M . Hearing loss in syndromic craniosynostoses: introduction and consideration of mechanisms. Am J Audiol, 2014,23(2):135-141. | [60] | Simpson A, Avdic A, Roos BR, DeLuca A, Miller K, Schnieders MJ, Scheetz TE, Alward WL, Fingert JH. LADD syndrome with glaucoma is caused by a novel gene. Mol Vis, 2017,23:179-184. | [61] | Talebi F, Mardasi FG, Asl JM, Bavarsad AH, Tizno S . Identification of a novel missence mutation in FGFR3 gene in an Iranian family with LADD syndrome by next- generation sequencing. Int J Pediatr Otorhinolaryngol, 2017,97:192-196. | [62] | Shams I, Rohmann E, Eswarakumar VP, Lew ED, Yuzawa S, Wollnik B, Schlessinger J, Lax I . Lacrimo-auriculo- dento-digital syndrome is caused by reduced activity of the fibroblast growth factor 10 (FGF10)-FGF receptor 2 signaling pathway. Mol Cell Biol, 2007,27(19):6903-6912. |
|